論文の概要: A Data-driven Dynamic Temporal Correlation Modeling Framework for Renewable Energy Scenario Generation
- arxiv url: http://arxiv.org/abs/2501.14233v1
- Date: Fri, 24 Jan 2025 04:40:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:31.005540
- Title: A Data-driven Dynamic Temporal Correlation Modeling Framework for Renewable Energy Scenario Generation
- Title(参考訳): 再生可能エネルギーシナリオ生成のためのデータ駆動動的時間相関モデリングフレームワーク
- Authors: Xiaochong Dong, Yilin Liu, Xuemin Zhang, Shengwei Mei,
- Abstract要約: 再生可能エネルギーシナリオ生成のための動的時間相関モデルフレームワークを提案する。
連立確率分布モデリングには, 新たな疎結合写像経路を用いる。
提案した動的相関量子化ネットワークは、不確実性を定量化する最先端の手法より優れている。
- 参考スコア(独自算出の注目度): 5.509260267801284
- License:
- Abstract: Renewable energy power is influenced by the atmospheric system, which exhibits nonlinear and time-varying features. To address this, a dynamic temporal correlation modeling framework is proposed for renewable energy scenario generation. A novel decoupled mapping path is employed for joint probability distribution modeling, formulating regression tasks for both marginal distributions and the correlation structure using proper scoring rules to ensure the rationality of the modeling process. The scenario generation process is divided into two stages. Firstly, the dynamic correlation network models temporal correlations based on a dynamic covariance matrix, capturing the time-varying features of renewable energy while enhancing the interpretability of the black-box model. Secondly, the implicit quantile network models the marginal quantile function in a nonparametric, continuous manner, enabling scenario generation through marginal inverse sampling. Experimental results demonstrate that the proposed dynamic correlation quantile network outperforms state-of-the-art methods in quantifying uncertainty and capturing dynamic correlation for short-term renewable energy scenario generation.
- Abstract(参考訳): 再生可能エネルギーは、非線形で時間的な特徴を持つ大気系の影響を受けている。
そこで, 再生可能エネルギーシナリオ生成のための動的時間相関モデルフレームワークを提案する。
連立確率分布モデリングにおいて, 境界分布と相関構造の両方に対する回帰タスクを適切なスコアリングルールを用いて定式化し, モデリングプロセスの合理性を確保する。
シナリオ生成過程は、2つの段階に分けられる。
まず、動的相関ネットワークは、動的共分散行列に基づいて時間相関をモデル化し、ブラックボックスモデルの解釈可能性を高めながら再生可能エネルギーの時間変化の特徴を捉えた。
第二に、暗黙的量子化ネットワークは、非パラメトリックかつ連続的に境界量子化関数をモデル化し、境界逆サンプリングによるシナリオ生成を可能にする。
実験結果から,提案した動的相関量子化ネットワークは, 短時間の再生可能エネルギーシナリオ生成において, 不確実性を定量化し, 動的相関を捉える上で, 最先端の手法よりも優れていることが示された。
関連論文リスト
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Event-Based Simulation of Stochastic Memristive Devices for Neuromorphic Computing [41.66366715982197]
イベントベースシステムのシミュレーションに適したメムリスタの一般モデルを構築した。
既存のmemristorの汎用モデルをイベント駆動設定に拡張する。
本稿では,イベントベースモデルのパラメータをドリフトモデルに適合させる手法を示す。
論文 参考訳(メタデータ) (2024-06-14T13:17:19Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Learning Space-Time Continuous Neural PDEs from Partially Observed
States [13.01244901400942]
格子独立モデル学習偏微分方程式(PDE)を雑音および不規則格子上の部分的な観測から導入する。
本稿では、効率的な確率的フレームワークとデータ効率とグリッド独立性を改善するための新しい設計エンコーダを備えた時空間連続型ニューラルネットワークPDEモデルを提案する。
論文 参考訳(メタデータ) (2023-07-09T06:53:59Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Short-Term Power Prediction for Renewable Energy Using Hybrid Graph
Convolutional Network and Long Short-Term Memory Approach [2.218886082289257]
再生可能エネルギーの短期的なパワーは常に複雑な回帰問題とみなされてきた。
本稿では,新しいグラフニューラルネットワークを用いた短期電力予測手法を提案する。
論文 参考訳(メタデータ) (2021-11-15T18:15:31Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
表現的自己回帰ダイナミクスモデルが次の状態の異なる次元を生成し、以前の次元で順次条件付きで報酬を得ることを示す。
また,リプレイバッファを充実させる手段として,自己回帰的ダイナミクスモデルがオフラインポリシー最適化に有用であることを示す。
論文 参考訳(メタデータ) (2021-04-28T16:48:44Z) - Dynamic Gaussian Mixture based Deep Generative Model For Robust
Forecasting on Sparse Multivariate Time Series [43.86737761236125]
本研究では,孤立した特徴表現ではなく,潜在クラスタの遷移を追跡する新しい生成モデルを提案する。
新たに設計された動的ガウス混合分布が特徴であり、クラスタリング構造のダイナミクスを捉えている。
帰納的解析を可能にするために構造化推論ネットワークも設計されている。
論文 参考訳(メタデータ) (2021-03-03T04:10:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。