論文の概要: TLXML: Task-Level Explanation of Meta-Learning via Influence Functions
- arxiv url: http://arxiv.org/abs/2501.14271v1
- Date: Fri, 24 Jan 2025 06:31:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:29.838241
- Title: TLXML: Task-Level Explanation of Meta-Learning via Influence Functions
- Title(参考訳): TLXML: 影響関数によるメタラーニングのタスクレベル説明
- Authors: Yoshihiro Mitsuka, Shadan Golestan, Zahin Sufiyan, Sheila Schoepp, Shotaro Miwa, Osmar R. Zaïane,
- Abstract要約: 本稿では,学習課題の適応と推論に対する感性を測定するメタ学習を説明するための影響関数を提案する。
また,ガウス・ニュートン行列を用いたヘッセン方程式の近似はメタラーニング特有の計算障壁を解くことを主張する。
- 参考スコア(独自算出の注目度): 3.687989572535845
- License:
- Abstract: The scheme of adaptation via meta-learning is seen as an ingredient for solving the problem of data shortage or distribution shift in real-world applications, but it also brings the new risk of inappropriate updates of the model in the user environment, which increases the demand for explainability. Among the various types of XAI methods, establishing a method of explanation based on past experience in meta-learning requires special consideration due to its bi-level structure of training, which has been left unexplored. In this work, we propose influence functions for explaining meta-learning that measure the sensitivities of training tasks to adaptation and inference. We also argue that the approximation of the Hessian using the Gauss-Newton matrix resolves computational barriers peculiar to meta-learning. We demonstrate the adequacy of the method through experiments on task distinction and task distribution distinction using image classification tasks with MAML and Prototypical Network.
- Abstract(参考訳): メタラーニングによる適応のスキームは、実世界のアプリケーションにおけるデータ不足や分散シフトの問題を解決するための要素と見なされるが、ユーザ環境におけるモデルの不適切な更新の新たなリスクも生じ、説明可能性の要求が高まる。
様々なタイプのXAI手法の中で,メタラーニングにおける過去の経験に基づく説明方法を確立するには,その2段階の訓練構造が未解明のまま残されているため,特に考慮が必要である。
本研究では,学習課題の適応と推論に対する感受性を計測するメタ学習を説明するための影響関数を提案する。
また,ガウス・ニュートン行列を用いたヘッセン方程式の近似はメタラーニング特有の計算障壁を解くことを主張する。
我々は,MAML と Prototypeal Network を用いた画像分類タスクを用いて,タスクの区別とタスク分布の区別に関する実験を通じて,提案手法の有効性を実証する。
関連論文リスト
- Rethinking Meta-Learning from a Learning Lens [17.00587250127854]
我々は、メタ学習の戦略を学ぶためのより基本的な学習に焦点を当て、環境を変えることなく、エラーの原因とこれらのエラーの除去方法を探る。
本稿では,メタ学習の最適化プロセスに対するタスク関係の利用を提案し,その目的を達成するために,TRLearner(Task Relation Learner)と呼ばれるプラグアンドプレイ手法を提案する。
論文 参考訳(メタデータ) (2024-09-13T02:00:16Z) - Unsupervised Meta-Learning via In-Context Learning [3.4165401459803335]
本稿では,教師なしメタ学習における教師なしメタ学習の一般化能力を活用した新しい手法を提案する。
提案手法は,メタラーニングをシーケンスモデリング問題として再設計し,トランスフォーマーエンコーダがサポート画像からタスクコンテキストを学習できるようにする。
論文 参考訳(メタデータ) (2024-05-25T08:29:46Z) - MetaModulation: Learning Variational Feature Hierarchies for Few-Shot
Learning with Fewer Tasks [63.016244188951696]
本稿では,タスクを減らした少数ショット学習手法を提案する。
メタトレーニングタスクを増やすために、さまざまなバッチレベルでパラメータを変更します。
また,変分法を取り入れた学習的変分特徴階層も導入する。
論文 参考訳(メタデータ) (2023-05-17T15:47:47Z) - Algorithm Design for Online Meta-Learning with Task Boundary Detection [63.284263611646]
非定常環境におけるタスクに依存しないオンラインメタ学習のための新しいアルゴリズムを提案する。
まず,タスクスイッチと分散シフトの簡易かつ効果的な2つの検出機構を提案する。
軽度条件下では,線形タスク平均的後悔がアルゴリズムに対して達成可能であることを示す。
論文 参考訳(メタデータ) (2023-02-02T04:02:49Z) - MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics [39.83408993820245]
本稿では,パラメータの異なる(未知の)PDE間で解演算子の知識を伝達する手法として,ニューラル演算子のメタラーニング手法を提案する。
我々のアプローチは、複数のPDE問題解決タスクに対する証明可能な普遍解演算子であり、基礎となるパラメータフィールドをニューラルネットワークモデルの第1層で捉えることができるという重要な理論的な観察である。
応用として,本手法が複雑で非線形な物理応答学習タスクを処理できると同時に,未確認タスクのサンプリング効率を大幅に改善できることを示す,PDEベースのデータセットと実世界の物質モデリング問題に対する提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-01-28T05:30:51Z) - Set-based Meta-Interpolation for Few-Task Meta-Learning [79.4236527774689]
そこで本研究では,メタトレーニングタスクの分散化を目的とした,ドメインに依存しないタスク拡張手法Meta-Interpolationを提案する。
様々な領域にまたがる8つのデータセットに対してメタ補間の有効性を実証的に検証した。
論文 参考訳(メタデータ) (2022-05-20T06:53:03Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
本稿では,メモリ模倣メタラーニング(MemIML)手法を提案する。
本手法の有効性を証明するために理論的解析を行った。
論文 参考訳(メタデータ) (2022-03-22T12:41:55Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
現在のメタ学習アルゴリズムは多数のメタトレーニングタスクを必要としており、実際のシナリオではアクセスできない可能性がある。
タスクグラデーションを用いたメタラーニング(MLTI)により,タスクのペアをランダムにサンプリングし,対応する特徴やラベルを補間することにより,タスクを効果的に生成する。
実証的な実験では,提案する汎用MLTIフレームワークが代表的なメタ学習アルゴリズムと互換性があり,他の最先端戦略を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-04T20:15:34Z) - On Data Efficiency of Meta-learning [17.739215706060605]
私たちは、現代のメタ学習アルゴリズムの見落とされがちな側面、すなわちそのデータ効率を研究します。
本稿では,メタラーニング手法を評価するための新しいシンプルなフレームワークを提案する。
本稿では,アクティブなデータ選択を学習学習に取り入れたアクティブなメタラーニングを提案する。
論文 参考訳(メタデータ) (2021-01-30T01:44:12Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
我々は、複数の関連するタスクから共通の機能の集合を学習し、その知識を新しい未知のタスクに転送する、という2つの課題に対処する、高速でサンプル効率のアルゴリズムを提供する。
また、これらの線形特徴を学習する際のサンプルの複雑さに関する情報理論の下限も提供する。
論文 参考訳(メタデータ) (2020-02-26T18:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。