Low-rank Prompt Interaction for Continual Vision-Language Retrieval
- URL: http://arxiv.org/abs/2501.14369v1
- Date: Fri, 24 Jan 2025 10:00:47 GMT
- Title: Low-rank Prompt Interaction for Continual Vision-Language Retrieval
- Authors: Weicai Yan, Ye Wang, Wang Lin, Zirun Guo, Zhou Zhao, Tao Jin,
- Abstract summary: We propose the Low-rank Prompt Interaction to address the problem of multi-modal understanding.
Considering that the training parameters scale to the number of layers and tasks, we propose low-rank interaction-augmented decomposition.
We also adopt hierarchical low-rank contrastive learning to ensure robustness training.
- Score: 47.323830129786145
- License:
- Abstract: Research on continual learning in multi-modal tasks has been receiving increasing attention. However, most existing work overlooks the explicit cross-modal and cross-task interactions. In this paper, we innovatively propose the Low-rank Prompt Interaction (LPI) to address this general problem of multi-modal understanding, which considers both cross-modal and cross-task interactions. Specifically, as for the former, we employ multi-modal correlation modules for corresponding Transformer layers. Considering that the training parameters scale to the number of layers and tasks, we propose low-rank interaction-augmented decomposition to avoid memory explosion while enhancing the cross-modal association through sharing and separating common-specific low-rank factors. In addition, due to the multi-modal semantic differences carried by the low-rank initialization, we adopt hierarchical low-rank contrastive learning to ensure training robustness. As for the latter, we initially employ a visual analysis and identify that different tasks have clear distinctions in proximity. Therefore, we introduce explicit task contrastive constraints in the prompt learning process based on task semantic distances. Experiments on two retrieval tasks show performance improvements with the introduction of a minimal number of parameters, demonstrating the effectiveness of our method. Code is available at https://github.com/Kelvin-ywc/LPI.
Related papers
- Deconstruct Complexity (DeComplex): A Novel Perspective on Tackling Dense Action Detection [23.100602876056165]
We introduce a novel perspective inspired by how humans tackle complex tasks by breaking them into manageable sub-tasks.
Instead of relying on a single network to address the entire problem, we propose decomposing the problem into detecting key concepts present in action classes.
Our experiments demonstrate the superiority of our approach over state-of-the-art methods.
arXiv Detail & Related papers (2025-01-30T17:20:42Z) - Tint Your Models Task-wise for Improved Multi-task Model Merging [17.496018757317824]
We propose Model Tinting, a test-time approach that introduces a single task-specific layer for each task as trainable adjustments.
Our method jointly trains merging coefficients and task-specific layers, which effectively reduces task conflicts with minimal additional costs.
Our method achieves state-of-the-art performance across both computer vision and natural language processing tasks.
arXiv Detail & Related papers (2024-12-26T07:42:06Z) - Contrastive Multi-Task Dense Prediction [11.227696986100447]
A core objective in design is how to effectively model cross-task interactions to achieve a comprehensive improvement on different tasks.
We introduce feature-wise contrastive consistency into modeling the cross-task interactions for multi-task dense prediction.
We propose a novel multi-task contrastive regularization method based on the consistency to effectively boost the representation learning of the different sub-tasks.
arXiv Detail & Related papers (2023-07-16T03:54:01Z) - DenseMTL: Cross-task Attention Mechanism for Dense Multi-task Learning [18.745373058797714]
We propose a novel multi-task learning architecture that leverages pairwise cross-task exchange through correlation-guided attention and self-attention.
We conduct extensive experiments across three multi-task setups, showing the advantages of our approach compared to competitive baselines in both synthetic and real-world benchmarks.
arXiv Detail & Related papers (2022-06-17T17:59:45Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - New Tight Relaxations of Rank Minimization for Multi-Task Learning [161.23314844751556]
We propose two novel multi-task learning formulations based on two regularization terms.
We show that our methods can correctly recover the low-rank structure shared across tasks, and outperform related multi-task learning methods.
arXiv Detail & Related papers (2021-12-09T07:29:57Z) - Channel Exchanging Networks for Multimodal and Multitask Dense Image
Prediction [125.18248926508045]
We propose Channel-Exchanging-Network (CEN) which is self-adaptive, parameter-free, and more importantly, applicable for both multimodal fusion and multitask learning.
CEN dynamically exchanges channels betweenworks of different modalities.
For the application of dense image prediction, the validity of CEN is tested by four different scenarios.
arXiv Detail & Related papers (2021-12-04T05:47:54Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.