論文の概要: Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning
- arxiv url: http://arxiv.org/abs/2407.16091v1
- Date: Mon, 22 Jul 2024 23:24:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 19:05:22.012674
- Title: Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning
- Title(参考訳): 音響解析と機械学習によるパーキンソン病の早期認識
- Authors: Niloofar Fadavi, Nazanin Fadavi,
- Abstract要約: パーキンソン病(英: Parkinson's Disease、PD)は、音声を含む運動機能と非運動機能の両方に大きな影響を及ぼす進行性神経変性疾患である。
本稿では,音声データを用いたPD認識手法の総合的なレビューを行い,機械学習とデータ駆動アプローチの進歩を強調した。
ロジスティック回帰、SVM、ニューラルネットワークなど、さまざまな分類アルゴリズムが検討されている。
以上の結果から,特定の音響特性と高度な機械学習技術は,PDと健常者の間で効果的に区別できることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech. Early and accurate recognition of PD through speech analysis can greatly enhance patient outcomes by enabling timely intervention. This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches. We discuss the process of data wrangling, including data collection, cleaning, transformation, and exploratory data analysis, to prepare the dataset for machine learning applications. Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection. Each method is evaluated based on accuracy, precision, and training time. Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls. The study concludes with a comparison of the different models, identifying the most effective approaches for PD recognition, and suggesting potential directions for future research.
- Abstract(参考訳): パーキンソン病(英: Parkinson's Disease、PD)は、音声を含む運動機能と非運動機能の両方に大きな影響を及ぼす進行性神経変性疾患である。
音声分析によるPDの早期かつ正確な認識は、タイムリーな介入を可能にすることで、患者の成果を大幅に向上させることができる。
本稿では,音声データを用いたPD認識手法の総合的なレビューを行い,機械学習とデータ駆動アプローチの進歩を強調した。
データ収集、クリーニング、変換、探索的データ分析を含むデータラングリングのプロセスについて議論し、機械学習アプリケーションのためのデータセットを作成する。
ロジスティック回帰、SVM、ニューラルネットワークなど、さまざまな分類アルゴリズムが検討されている。
各手法は精度、精度、訓練時間に基づいて評価される。
以上の結果から,特定の音響特性と高度な機械学習技術は,PDと健常者の間で効果的に区別できることが示唆された。
この研究は異なるモデルを比較し、PD認識の最も効果的なアプローチを特定し、将来の研究の方向性を示唆している。
関連論文リスト
- Diagnosis of Parkinson's Disease Using EEG Signals and Machine Learning Techniques: A Comprehensive Study [1.2972104025246092]
本稿では,パーキンソン病のヒト脳波信号解析による診断方法を提案する。
本手法は,脳波信号解析技術と機械学習手法の総合的なレビューを取り入れたものである。
パーキンソン病診断に最適化された高度SVMモデルを開発した。
論文 参考訳(メタデータ) (2024-04-30T04:25:09Z) - A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals [8.526741765074677]
本研究では,脳波信号を用いたパーキンソン病(PD)の深層学習モデルを提案する。
このモデルは、畳み込みニューラルネットワーク(CNN)、双方向ゲートリカレントユニット(Bi-GRU)、アテンションメカニズムからなるハイブリッドモデルを用いて設計されている。
その結果,提案モデルでは,トレーニングとホールドアウトデータセットの両方でPDを高精度に診断できることが示唆された。
論文 参考訳(メタデータ) (2023-08-14T20:06:19Z) - Analysis, Identification and Prediction of Parkinson Disease Sub-Types and Progression through Machine Learning [5.982922468400901]
本稿では,パーキンソン病の研究において,新たな機械学習フレームワークを用いてPDを異なるサブタイプに分類し,その進展を予測することによって,画期的な進歩を示す。
この革新的なアプローチは、従来の方法論がしばしば見逃すPDマニフェストの微妙だが批判的なパターンを識別することを可能にする。
論文 参考訳(メタデータ) (2023-06-07T19:54:56Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Parkinsons Disease Detection via Resting-State Electroencephalography
Using Signal Processing and Machine Learning Techniques [0.0]
パーキンソン病(英: Parkinsons Disease、PD)は、ドーパミン作動性ニューロンの変性により運動障害を引き起こす神経変性疾患である。
脳波はPD患者の異常を示す。
1つの大きな課題は、治療薬や治療薬で病気を綿密に監視するために、PDのための一貫性のある、正確で、体系的なバイオマーカーが欠如していることである。
論文 参考訳(メタデータ) (2023-03-29T06:03:05Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Machine learning discrimination of Parkinson's Disease stages from
walker-mounted sensors data [0.0]
本研究は,パーキンソン病進行の6段階を識別するための機械学習手法を適用した。
データは、運動障害クリニックの実験で、低コストの歩行センサーによって取得されました。
論文 参考訳(メタデータ) (2020-06-22T09:34:12Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。