論文の概要: Quantum Neural Networks: A Comparative Analysis and Noise Robustness Evaluation
- arxiv url: http://arxiv.org/abs/2501.14412v1
- Date: Fri, 24 Jan 2025 11:23:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:37.079567
- Title: Quantum Neural Networks: A Comparative Analysis and Noise Robustness Evaluation
- Title(参考訳): 量子ニューラルネットワーク:比較分析とノイズロバスト性評価
- Authors: Tasnim Ahmed, Muhammad Kashif, Alberto Marchisio, Muhammad Shafique,
- Abstract要約: 現在のノイズの多い中間規模量子(NISQ)デバイスでは、ハイブリッド量子ニューラルネットワーク(HQNN)が有望なソリューションを提供する。
QCNN(Quantum Convolution Neural Network)、Quannal Neural Network(QuanNN)、Quantum Transfer Learning(QTL)など、様々なHQNNアルゴリズムの比較分析を行う。
我々は,異なる絡み合い構造を持つ量子回路における各アルゴリズムの性能,層数の変化,アーキテクチャにおける最適配置を評価する。
- 参考スコア(独自算出の注目度): 4.2435928520499635
- License:
- Abstract: In current noisy intermediate-scale quantum (NISQ) devices, hybrid quantum neural networks (HQNNs) offer a promising solution, combining the strengths of classical machine learning with quantum computing capabilities. However, the performance of these networks can be significantly affected by the quantum noise inherent in NISQ devices. In this paper, we conduct an extensive comparative analysis of various HQNN algorithms, namely Quantum Convolution Neural Network (QCNN), Quanvolutional Neural Network (QuanNN), and Quantum Transfer Learning (QTL), for image classification tasks. We evaluate the performance of each algorithm across quantum circuits with different entangling structures, variations in layer count, and optimal placement in the architecture. Subsequently, we select the highest-performing architectures and assess their robustness against noise influence by introducing quantum gate noise through Phase Flip, Bit Flip, Phase Damping, Amplitude Damping, and the Depolarizing Channel. Our results reveal that the top-performing models exhibit varying resilience to different noise gates. However, in most scenarios, the QuanNN demonstrates greater robustness across various quantum noise channels, consistently outperforming other models. This highlights the importance of tailoring model selection to specific noise environments in NISQ devices.
- Abstract(参考訳): 現在のノイズの多い中間量子(NISQ)デバイスでは、ハイブリッド量子ニューラルネットワーク(HQNN)は、古典的な機械学習の強みと量子コンピューティング能力を組み合わせた、有望なソリューションを提供する。
しかし、これらのネットワークの性能は、NISQデバイスに固有の量子ノイズに大きく影響を受ける可能性がある。
本稿では,Quantum Convolution Neural Network(QCNN),Quanvolutional Neural Network(QuanNN),Quantum Transfer Learning(QTL)など,様々なHQNNアルゴリズムの比較分析を行った。
我々は,異なる絡み合い構造を持つ量子回路における各アルゴリズムの性能,層数の変化,アーキテクチャにおける最適配置を評価する。
次に, 位相Flip, Bit Flip, Phase Damping, Amplitude Damping, and the Depolarizing Channelを通じて, 高い性能のアーキテクチャを選択し, ノイズの影響に対するロバスト性を評価する。
その結果, 高い性能を示すモデルでは, 異なるノイズゲートに対して様々なレジリエンスを示すことがわかった。
しかし、ほとんどのシナリオでは、QuanNNは様々な量子ノイズチャネルにまたがってより大きなロバスト性を示し、他のモデルよりも一貫して優れている。
このことは、NISQデバイスにおける特定のノイズ環境に対するモデル選択の調整の重要性を強調している。
関連論文リスト
- Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification [10.069224006497162]
量子・スパイキングニューラルネットワーク(PPF-QSNN)の並列比例融合(Parallel Proportional Fusion of Quantum and Spiking Neural Networks)と呼ばれる新しいアーキテクチャを導入する。
提案したPPF-QSNNは、既存のスパイクニューラルネットワークと、精度、損失、ロバストネスといったメトリクスにわたるシリアル量子ニューラルネットワークの両方より優れている。
本研究は、人工知能計算における量子優位性の発展と応用の基盤となるものである。
論文 参考訳(メタデータ) (2024-04-01T10:35:35Z) - Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation
via Neural Networks [0.4779196219827508]
変分量子固有解法(VQE)は複雑な量子問題を解くための有望なアルゴリズムである。
量子デバイスにおけるノイズのユビキタスな存在は、しばしばVQE結果の正確さと信頼性を制限する。
本稿では,VQE計算におけるゼロノイズ外挿(ZNE)にニューラルネットワークを利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-10T15:35:41Z) - Studying the Impact of Quantum-Specific Hyperparameters on Hybrid Quantum-Classical Neural Networks [4.951980887762045]
ハイブリッド量子古典ニューラルネットワーク(HQNN)は、古典的な機械学習の強みと量子コンピューティング能力を組み合わせた、有望なソリューションである。
本稿では,PennyLaneフレームワーク上に実装された画像分類タスクのHQNNモデルに対して,これらのバリエーションが与える影響について検討する。
我々は,HQNNモデルの直感的および直感的学習パターンを制御された量子摂動の粒度レベル内で明らかにし,精度とトレーニング時間との相関関係の健全な基盤を構築することを目的としている。
論文 参考訳(メタデータ) (2024-02-16T11:44:25Z) - Assessing the Impact of Noise on Quantum Neural Networks: An
Experimental Analysis [0.0]
量子コンピューティングでは、量子ニューラルネットワーク(QNN)の潜在的な利点がますます明らかになっている。
ノイズの多い中間スケール量子(NISQ)プロセッサはエラーを起こしやすいため、複雑なアルゴリズムや量子機械学習の実行には大きな課題がある。
本稿では,QNNに対するノイズの影響を包括的に分析し,様々なノイズモデルの下でのMottonen状態生成アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2023-11-23T15:22:22Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Training Quantum Neural Networks on NISQ Devices [0.0]
我々は,IBMのNISQデバイス上での2つの量子ニューラルネットワーク(QNN)アーキテクチャの耐雑音性を評価する。
DQNNは未知のユニタリをQAOAよりも確実に学習し,ゲートノイズの影響を受けにくいことがわかった。
論文 参考訳(メタデータ) (2021-04-13T10:34:03Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。