論文の概要: Statistical Verification of Linear Classifiers
- arxiv url: http://arxiv.org/abs/2501.14430v1
- Date: Fri, 24 Jan 2025 11:56:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:57:21.838115
- Title: Statistical Verification of Linear Classifiers
- Title(参考訳): 線形分類器の統計的検証
- Authors: Anton Zhiyanov, Alexander Shklyaev, Alexey Galatenko, Vladimir Galatenko, Alexander Tonevitsky,
- Abstract要約: 本研究では,2つの試料間の線形分離性の概念に密接に関連する均一性試験を提案する。
本研究では,2次元試料に適用した場合に,テストのEmphp値の上限値の設定に焦点をあてる。
- 参考スコア(独自算出の注目度): 76.95660509846216
- License:
- Abstract: We propose a homogeneity test closely related to the concept of linear separability between two samples. Using the test one can answer the question whether a linear classifier is merely ``random'' or effectively captures differences between two classes. We focus on establishing upper bounds for the test's \emph{p}-value when applied to two-dimensional samples. Specifically, for normally distributed samples we experimentally demonstrate that the upper bound is highly accurate. Using this bound, we evaluate classifiers designed to detect ER-positive breast cancer recurrence based on gene pair expression. Our findings confirm significance of IGFBP6 and ELOVL5 genes in this process.
- Abstract(参考訳): 本研究では,2つの試料間の線形分離性の概念に密接に関連する均一性試験を提案する。
テストを使用すると、線形分類器が単に 'random'' であるかどうか、あるいは2つのクラスの違いを効果的に捉えることができる。
本研究では,2次元試料に適用した場合の試験値の値の上限値の設定に焦点をあてる。
具体的には、普通に分布するサンプルに対して、上界が極めて正確なことを実験的に証明する。
そこで本研究では,ER陽性乳癌再発を遺伝子組換えにより検出するための分類器について検討した。
この過程でIGFBP6, ELOVL5遺伝子の意義が判明した。
関連論文リスト
- Analysis of Diagnostics (Part II): Prevalence, Linear Independence, and Unsupervised Learning [0.0]
私は教師あり機械学習(ML)の文脈を考える
パートIIでは、これらの結果を教師なし学習のタスクに拡張できる範囲について検討している。
論文 参考訳(メタデータ) (2024-08-28T13:39:57Z) - Transductive conformal inference with adaptive scores [3.591224588041813]
トランスダクティブな設定では、テストのサンプルとして$m$の新たなポイントが決定されます。
本研究はP'olya urnモデルに従い, 実験分布関数の濃度不等式を確立することを目的とする。
本研究では,2つの機械学習タスクに対して一様かつ不確率な保証を行うことにより,これらの理論的結果の有用性を示す。
論文 参考訳(メタデータ) (2023-10-27T12:48:30Z) - A framework for paired-sample hypothesis testing for high-dimensional
data [7.400168551191579]
我々は、各一対のインスタンスを接続するラインセグメントの双分割超平面によって定義される決定規則によって、スコアリング関数が生成できるという考えを提唱した。
まず、各一対の双分極超平面とホッジス・リーマン推定器から導出される集約規則を推定する。
論文 参考訳(メタデータ) (2023-09-28T09:17:11Z) - Bootstrapped Edge Count Tests for Nonparametric Two-Sample Inference
Under Heterogeneity [5.8010446129208155]
両試料間の差異を正確に検出する新しい非パラメトリック試験法を開発した。
オンラインゲームにおけるユーザ行動検出のための総合シミュレーション研究と応用により,提案試験の非漸近性能が向上したことを示す。
論文 参考訳(メタデータ) (2023-04-26T22:25:44Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
本研究では,胸部X線像の非絡み合った潜在表現の学習にDirVAE(Dirichlet Variational Autoencoder)を用いることを検討した。
DirVAEモデルにより学習された多モード潜在表現の予測能力について,補助的多ラベル分類タスクの実装により検討した。
論文 参考訳(メタデータ) (2023-02-06T18:10:08Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
任意のバイナリ分類器によって生成される検出スコアから2次元表現を導出する簡単な方法を提案する。
ランク相関に基づいて,任意のスコアを用いた分類器の視覚的比較を容易にする。
提案手法は完全に汎用的であり,任意の検出タスクに適用可能だが,自動話者検証と音声アンチスプーフィングシステムによるスコアを用いた手法を実証する。
論文 参考訳(メタデータ) (2021-06-11T13:03:33Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z) - Predictive Value Generalization Bounds [27.434419027831044]
本稿では,二項分類の文脈におけるスコアリング関数の評価のためのビクテリオンフレームワークについて検討する。
本研究では,新しい分布自由な大偏差と一様収束境界を導出することにより,予測値に関するスコアリング関数の特性について検討する。
論文 参考訳(メタデータ) (2020-07-09T21:23:28Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。