論文の概要: Analysis of Diagnostics (Part II): Prevalence, Linear Independence, and Unsupervised Learning
- arxiv url: http://arxiv.org/abs/2408.16035v1
- Date: Wed, 28 Aug 2024 13:39:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 17:54:29.787225
- Title: Analysis of Diagnostics (Part II): Prevalence, Linear Independence, and Unsupervised Learning
- Title(参考訳): 診断の分析(第2報) : 頻度, 線形独立性, 教師なし学習
- Authors: Paul N. Patrone, Raquel A. Binder, Catherine S. Forconi, Ann M. Moormann, Anthony J. Kearsley,
- Abstract要約: 私は教師あり機械学習(ML)の文脈を考える
パートIIでは、これらの結果を教師なし学習のタスクに拡張できる範囲について検討している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This is the second manuscript in a two-part series that uses diagnostic testing to understand the connection between prevalence (i.e. number of elements in a class), uncertainty quantification (UQ), and classification theory. Part I considered the context of supervised machine learning (ML) and established a duality between prevalence and the concept of relative conditional probability. The key idea of that analysis was to train a family of discriminative classifiers by minimizing a sum of prevalence-weighted empirical risk functions. The resulting outputs can be interpreted as relative probability level-sets, which thereby yield uncertainty estimates in the class labels. This procedure also demonstrated that certain discriminative and generative ML models are equivalent. Part II considers the extent to which these results can be extended to tasks in unsupervised learning through recourse to ideas in linear algebra. We first observe that the distribution of an impure population, for which the class of a corresponding sample is unknown, can be parameterized in terms of a prevalence. This motivates us to introduce the concept of linearly independent populations, which have different but unknown prevalence values. Using this, we identify an isomorphism between classifiers defined in terms of impure and pure populations. In certain cases, this also leads to a nonlinear system of equations whose solution yields the prevalence values of the linearly independent populations, fully realizing unsupervised learning as a generalization of supervised learning. We illustrate our methods in the context of synthetic data and a research-use-only SARS-CoV-2 enzyme-linked immunosorbent assay (ELISA).
- Abstract(参考訳): これは、診断検査を用いて、有病率(クラス内の要素の数)、不確実性定量化(UQ)、分類理論の関連を理解する2部シリーズの2番目の写本である。
第1部では,教師あり機械学習(ML)の文脈を考察し,有病率と相対的条件確率の概念の二重性を確立した。
この分析の鍵となる考え方は、有病率重み付き経験的リスク関数の和を最小化することにより、識別的分類器群を訓練することであった。
結果の出力は相対確率レベルセットと解釈できるため、クラスラベルにおける不確実性推定が得られる。
この手順はまた、ある識別的および生成的MLモデルが等価であることを示した。
パートIIは、これらの結果が線形代数におけるアイデアへの言及を通じて教師なし学習におけるタスクにまで拡張できる範囲について考察する。
まず, サンプルのクラスが不明な不純物集団の分布を, 有病率の観点からパラメータ化できることを示す。
このことは、異なるが未知の有病率を持つ線形独立集団の概念を導入する動機となっている。
これを用いて、不純な集団と純粋集団で定義される分類器間の同型を同定する。
ある種の場合において、これはまた、解が線形独立な集団の有病率をもたらす非線形方程式の体系を導き、教師なし学習を教師なし学習の一般化として完全に実現する。
本稿では, 合成データとSARS-CoV-2酵素結合免疫測定法(ELISA)について述べる。
関連論文リスト
- Revisiting Non-separable Binary Classification and its Applications in Anomaly Detection [10.031370250511207]
XOR の線形分類が可能であることを示す。
我々は、SVMの目的に適合し、マージン内または外にあるデータを識別する等分性分離を提案する。
分類器はスムーズな近似でニューラルネットワークパイプラインに統合できる。
論文 参考訳(メタデータ) (2023-12-03T23:59:03Z) - Analysis of Diagnostics (Part I): Prevalence, Uncertainty Quantification, and Machine Learning [0.0]
この写本は、分類理論と有病率のより深い関係を研究する二部作の最初のものである。
そこで本稿では,有病率重み付き経験誤差を最小化することにより,Bstar (q)$を推定する数値ホモトピーアルゴリズムを提案する。
合成データとSARS-CoV-2酵素結合免疫測定法(ELISA)を用いて本法の有効性を検証した。
論文 参考訳(メタデータ) (2023-08-30T13:26:49Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - Function Classes for Identifiable Nonlinear Independent Component
Analysis [10.828616610785524]
潜在変数モデル(LVM)の教師なし学習は機械学習のデータ表現に広く用いられている。
最近の研究は、そのようなモデルの関数クラスを制約することは、識別可能性を促進することを示唆している。
これらの変換のサブクラスである共形写像が同定可能であることを証明し、新しい理論的結果を与える。
論文 参考訳(メタデータ) (2022-08-12T17:58:31Z) - On Finite-Sample Identifiability of Contrastive Learning-Based Nonlinear
Independent Component Analysis [11.012445089716016]
この研究は GCL ベースの nICA の有限サンプル識別可能性解析を行う。
本フレームワークは, GCL損失関数の特性, 統計解析, 数値微分を加味したものである。
論文 参考訳(メタデータ) (2022-06-14T04:59:08Z) - Entropy-Based Uncertainty Calibration for Generalized Zero-Shot Learning [49.04790688256481]
一般化ゼロショット学習(GZSL)の目的は、目に見えないクラスと見えないクラスの両方を認識することである。
ほとんどのGZSLメソッドは、通常、見えないクラスの意味情報から視覚表現を合成することを学ぶ。
本論文では,三重項損失を持つ2重変分オートエンコーダを利用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-09T05:21:27Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - Pairwise Supervision Can Provably Elicit a Decision Boundary [84.58020117487898]
類似性学習は、パターンのペア間の関係を予測することによって有用な表現を引き出す問題である。
類似性学習は、決定境界を直接引き出すことによって二項分類を解くことができることを示す。
論文 参考訳(メタデータ) (2020-06-11T05:35:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。