Learning more with the same effort: how randomization improves the robustness of a robotic deep reinforcement learning agent
- URL: http://arxiv.org/abs/2501.14443v1
- Date: Fri, 24 Jan 2025 12:23:12 GMT
- Title: Learning more with the same effort: how randomization improves the robustness of a robotic deep reinforcement learning agent
- Authors: Lucía Güitta-López, Jaime Boal, Álvaro J. López-López,
- Abstract summary: This paper analyzes the robustness of a state-of-the-art sim-to-real technique known as progressive neural networks (PNNs)
Randomizing certain variables during simulation-based training significantly mitigates this issue.
The increase in the model's accuracy is around 25% when diversity is introduced in the training process.
- Score: 0.0
- License:
- Abstract: The industrial application of Deep Reinforcement Learning (DRL) is frequently slowed down because of the inability to generate the experience required to train the models. Collecting data often involves considerable time and economic effort that is unaffordable in most cases. Fortunately, devices like robots can be trained with synthetic experience thanks to virtual environments. With this approach, the sample efficiency problems of artificial agents are mitigated, but another issue arises: the need for efficiently transferring the synthetic experience into the real world (sim-to-real). This paper analyzes the robustness of a state-of-the-art sim-to-real technique known as progressive neural networks (PNNs) and studies how adding diversity to the synthetic experience can complement it. To better understand the drivers that lead to a lack of robustness, the robotic agent is still tested in a virtual environment to ensure total control on the divergence between the simulated and real models. The results show that a PNN-like agent exhibits a substantial decrease in its robustness at the beginning of the real training phase. Randomizing certain variables during simulation-based training significantly mitigates this issue. On average, the increase in the model's accuracy is around 25% when diversity is introduced in the training process. This improvement can be translated into a decrease in the required real experience for the same final robustness performance. Notwithstanding, adding real experience to agents should still be beneficial regardless of the quality of the virtual experience fed into the agent.
Related papers
- Simulation as Reality? The Effectiveness of LLM-Generated Data in Open-ended Question Assessment [7.695222586877482]
This study investigates the potential and gap of simulative data to address the limitation of AI-based assessment tools.
Our findings reveal that while simulative data demonstrates promising results in training automated assessment models, its effectiveness has notable limitations.
The absence of real-world noise and biases, which are also present in over-processed real-world data, contributes to this limitation.
arXiv Detail & Related papers (2025-02-10T11:40:11Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
We introduce a novel framework for learning world models.
By providing a scalable and robust framework, we pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - In-Simulation Testing of Deep Learning Vision Models in Autonomous Robotic Manipulators [11.389756788049944]
Testing autonomous robotic manipulators is challenging due to the complex software interactions between vision and control components.
A crucial element of modern robotic manipulators is the deep learning based object detection model.
We propose the MARTENS framework, which integrates a photorealistic NVIDIA Isaac Sim simulator with evolutionary search to identify critical scenarios.
arXiv Detail & Related papers (2024-10-25T03:10:42Z) - VIRL: Volume-Informed Representation Learning towards Few-shot Manufacturability Estimation [0.0]
This work introduces VIRL, a Volume-Informed Representation Learning approach to pre-train a 3D geometric encoder.
The model pre-trained by VIRL shows substantial enhancements on demonstrating improved generalizability with limited data.
arXiv Detail & Related papers (2024-06-18T05:30:26Z) - Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
Counterfactual learning to rank (CLTR) has attracted extensive attention in the IR community for its ability to leverage massive logged user interaction data to train ranking models.
This paper investigates the robustness of existing CLTR models in complex and diverse situations.
We find that the DLA models and IPS-DCM show better robustness under various simulation settings than IPS-PBM and PRS with offline propensity estimation.
arXiv Detail & Related papers (2024-04-04T10:54:38Z) - Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation [8.940998315746684]
We propose a model-based reinforcement learning (RL) approach for robotic arm end-tasks.
We employ Bayesian neural network models to represent, in a probabilistic way, both the belief and information encoded in the dynamic model during exploration.
Our experiments show the advantages of our Bayesian model-based RL approach, with similar quality in the results than relevant alternatives.
arXiv Detail & Related papers (2024-04-02T11:44:37Z) - Facilitating Sim-to-real by Intrinsic Stochasticity of Real-Time
Simulation in Reinforcement Learning for Robot Manipulation [1.6686307101054858]
We investigate the properties of intrinsicity of real-time simulation (RT-IS) of off-the-shelf simulation software.
RT-IS requires less randomization, is not task-dependent, and achieves better generalizability than the conventional domain-randomization-powered agents.
arXiv Detail & Related papers (2023-04-12T12:15:31Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
In robotics, one approach to generate training data builds on simulations based on dynamics models derived from first principles.
Here, we leverage the imbalance in complexity of the dynamics to learn more sample-efficiently.
We validate our method on several challenging simulated tasks and demonstrate that it improves learning both alone and when combined with an existing hindsight algorithm.
arXiv Detail & Related papers (2023-03-03T21:55:04Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Adversarial Training is Not Ready for Robot Learning [55.493354071227174]
Adversarial training is an effective method to train deep learning models that are resilient to norm-bounded perturbations.
We show theoretically and experimentally that neural controllers obtained via adversarial training are subjected to three types of defects.
Our results suggest that adversarial training is not yet ready for robot learning.
arXiv Detail & Related papers (2021-03-15T07:51:31Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
We show how to adapt vision-based robotic manipulation policies to new variations by fine-tuning via off-policy reinforcement learning.
This adaptation uses less than 0.2% of the data necessary to learn the task from scratch.
We find that our approach of adapting pre-trained policies leads to substantial performance gains over the course of fine-tuning.
arXiv Detail & Related papers (2020-04-21T17:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.