論文の概要: A Note on Implementation Errors in Recent Adaptive Attacks Against Multi-Resolution Self-Ensembles
- arxiv url: http://arxiv.org/abs/2501.14496v1
- Date: Fri, 24 Jan 2025 13:52:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:58:34.845841
- Title: A Note on Implementation Errors in Recent Adaptive Attacks Against Multi-Resolution Self-Ensembles
- Title(参考訳): マルチ・リゾリューション・セルフ・アンサンブルに対する最近の適応的攻撃における実装誤差に関する一考察
- Authors: Stanislav Fort,
- Abstract要約: 本報告では, マルチレゾリューション・セルフアンサンブル・ディフェンスに対する最近のアダプティブ・アタックにおける実装問題について述べる。
攻撃が意図した境界内で適切に拘束されている場合、防御は非自明な堅牢性を維持する。
強い多重解像度の自己アンサンブルに対する適切な適応的攻撃は、人間の知覚とよく一致している。
- 参考スコア(独自算出の注目度): 7.681029509871509
- License:
- Abstract: This note documents an implementation issue in recent adaptive attacks (Zhang et al. [2024]) against the multi-resolution self-ensemble defense (Fort and Lakshminarayanan [2024]). The implementation allowed adversarial perturbations to exceed the standard $L_\infty = 8/255$ bound by up to a factor of 20$\times$, reaching magnitudes of up to $L_\infty = 160/255$. When attacks are properly constrained within the intended bounds, the defense maintains non-trivial robustness. Beyond highlighting the importance of careful validation in adversarial machine learning research, our analysis reveals an intriguing finding: properly bounded adaptive attacks against strong multi-resolution self-ensembles often align with human perception, suggesting the need to reconsider how we measure adversarial robustness.
- Abstract(参考訳): このノートは、マルチレゾリューション・セルフ・アンサンブル・ディフェンス(Fort and Lakshminarayanan [2024])に対する最近のアダプティブ・アタック(Zhang et al [2024])の実装問題を記述している。
この実装により、標準の$L_\infty = 8/255$を超え、最大20$\times$となり、最大で$L_\infty = 160/255$に達する。
攻撃が意図した境界内で適切に拘束されている場合、防御は非自明な堅牢性を維持する。
我々の分析は、敵の機械学習研究における慎重な検証の重要性を強調するだけでなく、興味深い発見を明らかにしている: 強い多解像度の自己アンサンブルに対する適切な拘束された適応攻撃は、しばしば人間の知覚と一致し、敵の堅牢性を測定する方法を再考する必要性を示唆している。
関連論文リスト
- Position: Towards Resilience Against Adversarial Examples [42.09231029292568]
我々は、敵の弾力性の定義と、敵の弾力性のある防御を設計する方法について概観する。
次に, 対向弾性のサブプロブレムを導入し, 連続適応ロバストネス(continuousal adapt robustness)と呼ぶ。
本研究では, 連続適応ロバストネスと, マルチアタックロバストネスと予期せぬアタックロバストネスの関連性を実証する。
論文 参考訳(メタデータ) (2024-05-02T14:58:44Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume [17.198794644483026]
本稿では,様々な摂動強度に対して総合的に深層学習モデルの頑健性を評価するための,対向超体積と呼ばれる新しい計量法を提案する。
我々は,様々な摂動強度の対向的堅牢性を均一に向上する新しいトレーニングアルゴリズムを採用する。
本研究はロバスト性の新しい尺度に寄与し、敵の脅威に対するベンチマーク評価と、現在および将来の防御モデルのレジリエンスの基準を確立する。
論文 参考訳(メタデータ) (2024-03-08T07:03:18Z) - Cooperation or Competition: Avoiding Player Domination for Multi-Target
Robustness via Adaptive Budgets [76.20705291443208]
我々は、敵攻撃を、異なるプレイヤーがパラメータ更新の合同方向で合意に達するために交渉する交渉ゲームであると見なしている。
我々は、プレイヤーの優位性を避けるために、異なる敵の予算を調整する新しいフレームワークを設計する。
標準ベンチマークの実験では、提案したフレームワークを既存のアプローチに適用することで、マルチターゲットロバスト性が大幅に向上することが示された。
論文 参考訳(メタデータ) (2023-06-27T14:02:10Z) - Interpretability is a Kind of Safety: An Interpreter-based Ensemble for
Adversary Defense [28.398901783858005]
我々は,強固な防御敵に対するX-Ensembleと呼ばれるインタプリタベースのアンサンブルフレームワークを提案する。
X-エンサンブルはランダムフォレスト(RF)モデルを用いて、準検出器をアンサンブル検出器に結合し、敵のハイブリッド攻撃防御を行う。
論文 参考訳(メタデータ) (2023-04-14T04:32:06Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack [96.50202709922698]
実用的な評価手法は、便利な(パラメータフリー)、効率的な(イテレーションの少ない)、信頼性を持つべきである。
本稿では,パラメータフリーな適応オートアタック (A$3$) 評価手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T04:53:54Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks [65.20660287833537]
本稿では,最適段差の大きさと目的関数の問題による障害を克服するPGD攻撃の2つの拡張を提案する。
そして、我々の新しい攻撃と2つの補完的な既存の攻撃を組み合わせることで、パラメータフリーで、計算に手頃な価格で、ユーザに依存しない攻撃のアンサンブルを形成し、敵の堅牢性をテストする。
論文 参考訳(メタデータ) (2020-03-03T18:15:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。