Neuronal and structural differentiation in the emergence of abstract rules in hierarchically modulated spiking neural networks
- URL: http://arxiv.org/abs/2501.14539v3
- Date: Mon, 19 May 2025 06:20:42 GMT
- Title: Neuronal and structural differentiation in the emergence of abstract rules in hierarchically modulated spiking neural networks
- Authors: Yingchao Yu, Yaochu Jin, Kuangrong Hao, Yuchen Xiao, Yuping Yan, Hengjie Yu, Zeqi Zheng,
- Abstract summary: Internal organizing mechanisms underlying rule abstraction remain elusive.<n>This work introduces a hierarchically modulated recurrent spiking neural network (HM-RSNN) that can tune intrinsic neuronal properties.<n>We conduct modeling using HM-RSNN across four cognitive tasks and rule abstraction contingent differentiation is observed at both network and neuron levels.
- Score: 20.58066918526133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of abstract rules from exemplars is central to the brain's capability of flexible generalization and rapid adaptation. However, the internal organizing mechanisms underlying rule abstraction remain elusive, largely due to the limitations of conventional models that lack intrinsic neuronal heterogeneity, making it hard to examine neuronal and structural differentiations. Inspired by astrocyte-mediated neuromodulation, this work introduces a hierarchically modulated recurrent spiking neural network (HM-RSNN) that can tune intrinsic neuronal properties, where a global stage simulates calcium wave-driven task-specific configuration and a local one mimics gliotransmitter-mediated fine-tuning. We conduct modeling using HM-RSNN across four cognitive tasks and rule abstraction contingent differentiation is observed at both network and neuron levels, leading to better performance compared to artificial neural networks. These findings highlight the critical role of dynamic internal organization in supporting the accomplishment of various cognitive tasks.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models [68.89389652724378]
NOBLE is a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection.<n>It predicts distributions of neural dynamics accounting for the intrinsic experimental variability.<n>NOBLE is the first scaled-up deep learning framework validated on real experimental data.
arXiv Detail & Related papers (2025-06-05T01:01:18Z) - Neural Models of Task Adaptation: A Tutorial on Spiking Networks for Executive Control [0.0]
This tutorial presents a step-by-step approach to constructing a spiking neural network (SNN) that simulates task-switching dynamics.<n>The model incorporates biologically realistic features, including lateral inhibition, adaptive synaptic weights, and precise parameterization within physiologically relevant ranges.<n>By following this tutorial, researchers can develop and extend biologically inspired SNN models for studying cognitive processes and neural adaptation.
arXiv Detail & Related papers (2025-03-05T00:44:34Z) - Spiking World Model with Multi-Compartment Neurons for Model-based Reinforcement Learning [6.0483672878162515]
Brain-inspired spiking neural networks (SNNs) have garnered significant research attention in algorithm design and perception applications.
However, their potential in the decision-making domain, particularly in model-based reinforcement learning, remains underexplored.
We propose a multi-compartment neuron model capable of nonlinearly integrating information from multiple dendritic sources to dynamically process long sequential inputs.
arXiv Detail & Related papers (2025-03-02T03:40:10Z) - Graph-Based Representation Learning of Neuronal Dynamics and Behavior [2.3859858429583665]
We introduce the Temporal Attention-enhanced Variational Graph Recurrent Neural Network (TAVRNN), a novel framework that models time-varying neuronal connectivity.<n>TAVRNN learns latent dynamics at the single-unit level while maintaining interpretable population-level representations.<n>We validate TAVRNN on three diverse datasets: (1) electrophysiological data from a freely behaving rat, (2) primate somatosensory cortex recordings during a reaching task, and (3) biological neurons in the DishBrain platform interacting with a virtual game environment.
arXiv Detail & Related papers (2024-10-01T13:19:51Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing.
This paper weaves together three groundbreaking studies that revolutionize SNN performance.
arXiv Detail & Related papers (2024-07-08T23:33:12Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks [1.9775291915550175]
Spiking neural networks (SNNs) are posited as a computationally efficient and biologically plausible alternative to conventional neural architectures.
We develop a scalable probabilistic spiking learning framework for long-range dependency tasks.
Our models attain state-of-the-art performance among SNN models across diverse long-range dependency tasks.
arXiv Detail & Related papers (2024-06-05T04:23:11Z) - Context Gating in Spiking Neural Networks: Achieving Lifelong Learning through Integration of Local and Global Plasticity [20.589970453110208]
Humans learn multiple tasks in succession with minimal mutual interference, through the context gating mechanism in the prefrontal cortex (PFC)
We propose SNN with context gating trained by the local plasticity rule (CG-SNN) for lifelong learning.
Experiments show that the proposed model is effective in maintaining the past learning experience and has better task-selectivity than other methods during lifelong learning.
arXiv Detail & Related papers (2024-06-04T01:35:35Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Episodic Memory Theory for the Mechanistic Interpretation of Recurrent
Neural Networks [3.683202928838613]
We propose the Episodic Memory Theory (EMT), illustrating that RNNs can be conceptualized as discrete-time analogs of the recently proposed General Sequential Episodic Memory Model.
We introduce a novel set of algorithmic tasks tailored to probe the variable binding behavior in RNNs.
Our empirical investigations reveal that trained RNNs consistently converge to the variable binding circuit, thus indicating universality in the dynamics of RNNs.
arXiv Detail & Related papers (2023-10-03T20:52:37Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Exploiting Noise as a Resource for Computation and Learning in Spiking
Neural Networks [32.0086664373154]
This study introduces the noisy spiking neural network (NSNN) and the noise-driven learning rule (NDL)
NSNN provides a theoretical framework that yields scalable, flexible, and reliable computation.
arXiv Detail & Related papers (2023-05-25T13:21:26Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Neurons as hierarchies of quantum reference frames [0.0]
We develop a uniform, scalable representation of synapses, dendritic and axonal processes, neurons, and local networks of neurons.
We summarize how the model may be generalized to nonneural cells and tissues in developmental and regenerative contexts.
arXiv Detail & Related papers (2022-01-04T00:53:56Z) - Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics
Organized by Astrocyte-modulated Plasticity [0.0]
Liquid state machine (LSM) tunes internal weights without backpropagation of gradients.
Recent findings suggest that astrocytes, a long-neglected non-neuronal brain cell, modulate synaptic plasticity and brain dynamics.
We propose the neuron-astrocyte liquid state machine (NALSM) that addresses under-performance through self-organized near-critical dynamics.
arXiv Detail & Related papers (2021-10-26T23:04:40Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - The distribution of inhibitory neurons in the C. elegans connectome
facilitates self-optimization of coordinated neural activity [78.15296214629433]
The nervous system of the nematode Caenorhabditis elegans exhibits remarkable complexity despite the worm's small size.
A general challenge is to better understand the relationship between neural organization and neural activity at the system level.
We implemented an abstract simulation model of the C. elegans connectome that approximates the neurotransmitter identity of each neuron.
arXiv Detail & Related papers (2020-10-28T23:11:37Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.