論文の概要: Hierarchical Count Echo State Network Models with Application to Graduate Student Enrollments
- arxiv url: http://arxiv.org/abs/2501.14698v1
- Date: Fri, 24 Jan 2025 18:19:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:18.803694
- Title: Hierarchical Count Echo State Network Models with Application to Graduate Student Enrollments
- Title(参考訳): 階層的なEcho状態ネットワークモデルと大学院生の入学
- Authors: Qi Wang, Paul A. Parker, Robert B. Lund,
- Abstract要約: 本稿では,ポアソン自己回帰の代替として,エコー状態ネットワークをカウントする手法を提案する。
本稿では,ポアソンエコー法によるデータをカウントする手法を開発し,それを大規模カウントデータセットに適用する。
階層的な負二項型エコー状態ネットワークを優れたモデルと判断する。
- 参考スコア(独自算出の注目度): 4.095418032380801
- License:
- Abstract: Poisson autoregressive count models have evolved into a time series staple for correlated count data. This paper proposes an alternative to Poisson autoregressions: count echo state networks. Echo state networks can be statistically analyzed in frequentist manners via optimizing penalized likelihoods, or in Bayesian manners via MCMC sampling. This paper develops Poisson echo state techniques for count data and applies them to a massive count data set containing the number of graduate students from 1,758 United States universities during the years 1972-2021 inclusive. Negative binomial models are also implemented to better handle overdispersion in the counts. Performance of the proposed models are compared via their forecasting performance as judged by several methods. In the end, a hierarchical negative binomial based echo state network is judged as the superior model.
- Abstract(参考訳): ポアソン自己回帰カウントモデルは相関カウントデータのための時系列スタプルへと進化してきた。
本稿では,ポアソン自己回帰の代替として,エコー状態ネットワークをカウントする手法を提案する。
エコー状態ネットワークは、ペナル化確率を最適化したり、MCMCサンプリングによってベイズ的な方法で統計学的に分析することができる。
本稿では,1972-2021年度の米国大学1,758校の卒業生数を含む膨大なデータ集合にポアソンエコー法を適用した。
負の二項モデルも、カウントの過分散を処理するために実装されている。
提案モデルの性能は,いくつかの手法で評価された予測性能によって比較される。
最後に、階層的な負二項型エコー状態ネットワークを上位モデルとみなす。
関連論文リスト
- Scalable Inference for Bayesian Multinomial Logistic-Normal Dynamic Linear Models [0.5735035463793009]
この記事では、$textitFenrir$と呼ばれる、後続状態推定に対する効率的で正確なアプローチを開発します。
我々の実験から、フェンリルはスタンよりも3桁効率が良いことが示唆された。
当社のメソッドは,C++で記述されたユーザフレンドリなソフトウェアライブラリとして,Rインターフェースを備えたコミュニティで利用可能です。
論文 参考訳(メタデータ) (2024-10-07T23:20:14Z) - A Metalearned Neural Circuit for Nonparametric Bayesian Inference [4.767884267554628]
機械学習の分類への応用のほとんどは、バランスの取れたクラスの閉じた集合を前提としている。
これは、クラス発生統計が長い尾の力量分布に従うことがしばしばある実世界と矛盾する。
本研究では,非パラメトリックベイズモデルから誘導バイアスを抽出し,人工ニューラルネットワークに転送する手法を提案する。
論文 参考訳(メタデータ) (2023-11-24T16:43:17Z) - Approximate Gibbs Sampler for Efficient Inference of Hierarchical Bayesian Models for Grouped Count Data [0.0]
本研究は、推定精度を維持しつつ、HBPRMを効率的に学習するための近似ギブスサンプリング器(AGS)を開発した。
実データと合成データを用いた数値実験により,AGSの優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-28T21:00:55Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
PLモデルにおいて,より標本効率の高い予測値を生成するための新しい手法を開発した。
Amazon MusicのリアルなレコメンデーションデータとYahooの学習からランクへの挑戦を理論的にも実証的にも使用しています。
論文 参考訳(メタデータ) (2022-05-12T11:15:47Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
我々は,ディープニューラルネットワークに基づくオートエンコーダの内部次元を要約統計として利用する。
パラメータ関連情報を全て符号化するエンコーダのインセンティブを作成するため,トレーニングデータの生成に使用した暗黙的情報にデコーダがアクセスできるようにする。
論文 参考訳(メタデータ) (2022-01-28T12:00:31Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Improving Distantly Supervised Relation Extraction with Self-Ensemble
Noise Filtering [17.45521023572853]
本研究では,学習過程におけるノイズを除去する自己アンサンブルフィルタリング機構を提案する。
複数の最先端関係抽出モデルを用いた実験により,提案したフィルタリング機構はモデルの堅牢性を改善し,F1スコアを増加させることを示す。
論文 参考訳(メタデータ) (2021-08-22T11:23:36Z) - CSDI: Conditional Score-based Diffusion Models for Probabilistic Time
Series Imputation [107.63407690972139]
Conditional Score-based Diffusion Model for Imputation (CSDI) は、観測データに条件付きスコアベース拡散モデルを利用する新しい時系列計算法である。
CSDIは、一般的なパフォーマンスメトリクスの既存の確率論的計算方法よりも40-70%改善されている。
さらに、Cは最先端の決定論的計算法と比較して誤差を5-20%削減する。
論文 参考訳(メタデータ) (2021-07-07T22:20:24Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
量子回帰は、予測の不確実性を定量化する必要性によって動機付けられた統計学習の基本的な問題である。
条件付き量子モデルの任意の数を集約する手法について検討する。
この論文で検討するモデルはすべて、現代のディープラーニングツールキットに適合します。
論文 参考訳(メタデータ) (2021-02-26T23:21:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。