論文の概要: Scalable Inference for Bayesian Multinomial Logistic-Normal Dynamic Linear Models
- arxiv url: http://arxiv.org/abs/2410.05548v1
- Date: Mon, 7 Oct 2024 23:20:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 18:08:20.500302
- Title: Scalable Inference for Bayesian Multinomial Logistic-Normal Dynamic Linear Models
- Title(参考訳): ベイジアン多項ロジスティック-非線形動的線形モデルに対するスケーラブル推論
- Authors: Manan Saxena, Tinghua Chen, Justin D. Silverman,
- Abstract要約: この記事では、$textitFenrir$と呼ばれる、後続状態推定に対する効率的で正確なアプローチを開発します。
我々の実験から、フェンリルはスタンよりも3桁効率が良いことが示唆された。
当社のメソッドは,C++で記述されたユーザフレンドリなソフトウェアライブラリとして,Rインターフェースを備えたコミュニティで利用可能です。
- 参考スコア(独自算出の注目度): 0.5735035463793009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many scientific fields collect longitudinal count compositional data. Each observation is a multivariate count vector, where the total counts are arbitrary, and the information lies in the relative frequency of the counts. Multiple authors have proposed Bayesian Multinomial Logistic-Normal Dynamic Linear Models (MLN-DLMs) as a flexible approach to modeling these data. However, adoption of these methods has been limited by computational challenges. This article develops an efficient and accurate approach to posterior state estimation, called $\textit{Fenrir}$. Our approach relies on a novel algorithm for MAP estimation and an accurate approximation to a key posterior marginal of the model. As there are no equivalent methods against which we can compare, we also develop an optimized Stan implementation of MLN-DLMs. Our experiments suggest that Fenrir can be three orders of magnitude more efficient than Stan and can even be incorporated into larger sampling schemes for joint inference of model hyperparameters. Our methods are made available to the community as a user-friendly software library written in C++ with an R interface.
- Abstract(参考訳): 多くの科学分野が縦数構成データを集めている。
それぞれの観測は多変量ベクトルであり、トータルカウントは任意であり、情報はカウントの相対周波数にある。
複数の著者がこれらのデータをモデル化するための柔軟なアプローチとしてベイズ多相ロジスティック非線形動的線形モデル(MLN-DLM)を提案している。
しかし、これらの手法の採用は計算上の問題によって制限されてきた。
この記事では、$\textit{Fenrir}$と呼ばれる、後続状態推定に対する効率的かつ正確なアプローチを開発します。
提案手法は,MAP推定のための新しいアルゴリズムと,モデルの後縁部分に対する正確な近似に依存する。
比較可能な等価な手法が存在しないため,MLN-DLMの最適化Stan実装も開発している。
実験の結果,FenrirはStanよりも3桁効率が良く,モデルハイパーパラメータの共振器推定のためのより大規模なサンプリングスキームに組み込むことが可能であることが示唆された。
当社のメソッドは,C++で記述されたユーザフレンドリなソフトウェアライブラリとして,Rインターフェースを備えたコミュニティで利用可能です。
関連論文リスト
- Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Multidimensional Item Response Theory in the Style of Collaborative
Filtering [0.8057006406834467]
本稿では,多次元項目応答理論(MIRT)に対する機械学習手法を提案する。
協調フィルタリングに触発されて、多くのMIRTモデルを含むモデルの一般的なクラスを定義します。
本稿では, 個人モデルとクロスバリデーションを推定し, 最適動作モデルを選択するために, ペナル化結合最大度(JML)の使用について論じる。
論文 参考訳(メタデータ) (2023-01-03T00:56:27Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Robust leave-one-out cross-validation for high-dimensional Bayesian
models [0.0]
レリーブ・ワン・アウト・クロスバリデーション (LOO-CV) は、アウト・オブ・サンプル予測精度を推定するための一般的な手法である。
そこで本研究では,LOO-CV基準を計算するための新しい混合推定器を提案し,解析する。
提案手法は古典的手法の単純さと計算的利便性を保ちながら, 得られた推定値の有限分散を保証している。
論文 参考訳(メタデータ) (2022-09-19T17:14:52Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Multitarget Tracking with Transformers [21.81266872964314]
マルチターゲットトラッキング(MTT)は、ノイズの多い測定を使用して未知のオブジェクトの数の状態を追跡する問題です。
本稿では,Transformer アーキテクチャに基づく MTT の高性能深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-04-01T19:14:55Z) - Fast covariance parameter estimation of spatial Gaussian process models
using neural networks [0.0]
我々はnnを入力として適度な大きさの空間場または変量線を取り、範囲と信号間の共分散パラメータを返すように訓練する。
トレーニングが完了すると、nnsはml推定と同等の精度で見積もりを提供し、100倍以上のスピードアップを行う。
この作業は、他のより複雑な空間問題に容易に拡張することができ、計算統計における機械学習の使用に対する概念の証明を提供する。
論文 参考訳(メタデータ) (2020-12-30T22:06:26Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - PIANO: A Fast Parallel Iterative Algorithm for Multinomial and Sparse
Multinomial Logistic Regression [0.0]
PIANOはスパース多項ロジスティック回帰問題を解くために容易に拡張可能であることを示す。
また, PIANO が多項系およびスパース多項系ロジスティック回帰問題の定常点に収束することが証明された。
論文 参考訳(メタデータ) (2020-02-21T05:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。