FSTA-SNN:Frequency-based Spatial-Temporal Attention Module for Spiking Neural Networks
- URL: http://arxiv.org/abs/2501.14744v2
- Date: Wed, 05 Feb 2025 08:50:18 GMT
- Title: FSTA-SNN:Frequency-based Spatial-Temporal Attention Module for Spiking Neural Networks
- Authors: Kairong Yu, Tianqing Zhang, Hongwei Wang, Qi Xu,
- Abstract summary: Spiking Neural Networks (SNNs) are emerging as a promising alternative to Artificial Neural Networks (ANNs)
In this work, we analyze inherent inherent characteristics of SNNs from both temporal and spatial perspectives.
We propose a Frequency-based Spatial Attention (FSTA) module to enhance feature learning in SNNs.
- Score: 6.185559627969663
- License:
- Abstract: Spiking Neural Networks (SNNs) are emerging as a promising alternative to Artificial Neural Networks (ANNs) due to their inherent energy efficiency. Owing to the inherent sparsity in spike generation within SNNs, the in-depth analysis and optimization of intermediate output spikes are often neglected. This oversight significantly restricts the inherent energy efficiency of SNNs and diminishes their advantages in spatiotemporal feature extraction, resulting in a lack of accuracy and unnecessary energy expenditure. In this work, we analyze the inherent spiking characteristics of SNNs from both temporal and spatial perspectives. In terms of spatial analysis, we find that shallow layers tend to focus on learning vertical variations, while deeper layers gradually learn horizontal variations of features. Regarding temporal analysis, we observe that there is not a significant difference in feature learning across different time steps. This suggests that increasing the time steps has limited effect on feature learning. Based on the insights derived from these analyses, we propose a Frequency-based Spatial-Temporal Attention (FSTA) module to enhance feature learning in SNNs. This module aims to improve the feature learning capabilities by suppressing redundant spike features.The experimental results indicate that the introduction of the FSTA module significantly reduces the spike firing rate of SNNs, demonstrating superior performance compared to state-of-the-art baselines across multiple datasets.
Related papers
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - Low Latency of object detection for spikng neural network [3.404826786562694]
Spiking Neural Networks are well-suited for edge AI applications due to their binary spike nature.
In this paper, we focus on generating highly accurate and low-latency SNNs specifically for object detection.
arXiv Detail & Related papers (2023-09-27T10:26:19Z) - Inherent Redundancy in Spiking Neural Networks [24.114844269113746]
Spiking Networks (SNNs) are a promising energy-efficient alternative to conventional artificial neural networks.
In this work, we focus on three key questions regarding inherent redundancy in SNNs.
We propose an Advance Attention (ASA) module to harness SNNs' redundancy.
arXiv Detail & Related papers (2023-08-16T08:58:25Z) - Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper
Directly-Trained Spiking Neural Networks [19.490903216456758]
Spiking neural networks (SNNs) are neural networks with asynchronous discrete and sparse characteristics.
We propose a multi-level firing (MLF) method based on the existing spiking-suppressed residual network (spiking DS-ResNet)
arXiv Detail & Related papers (2022-10-12T16:39:46Z) - STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks [7.422913384086416]
Spiking Neural Networks (SNNs), as one of the algorithmic models in neuromorphic computing, have gained a great deal of research attention owing to temporal processing capability.
Existing synaptic structures in SNNs are almost full-connections or spatial 2D convolution, neither which can extract temporal dependencies adequately.
We take inspiration from biological synapses and propose a synaptic connection SNN model, to enhance the synapse-temporal receptive fields of synaptic connections.
We show that endowing synaptic models with temporal dependencies can improve the performance of SNNs on classification tasks.
arXiv Detail & Related papers (2022-10-11T08:13:22Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.