論文の概要: Conformal Inference of Individual Treatment Effects Using Conditional Density Estimates
- arxiv url: http://arxiv.org/abs/2501.14933v1
- Date: Fri, 24 Jan 2025 21:46:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:59:29.824166
- Title: Conformal Inference of Individual Treatment Effects Using Conditional Density Estimates
- Title(参考訳): 条件密度推定を用いた個別処理効果のコンフォーマル推論
- Authors: Baozhen Wang, Xingye Qiao,
- Abstract要約: 現在の最先端のアプローチは、有効な予測間隔を提供する一方で、しばしば過度に保守的な予測間隔をもたらす。
本研究では,結果の条件密度を用いたITEに対する共形推論手法を提案する。
予測間隔は, 限界的に有効であるだけでなく, 既存の手法よりも狭いことを示す。
- 参考スコア(独自算出の注目度): 3.7307776333361122
- License:
- Abstract: In an era where diverse and complex data are increasingly accessible, the precise prediction of individual treatment effects (ITE) becomes crucial across fields such as healthcare, economics, and public policy. Current state-of-the-art approaches, while providing valid prediction intervals through Conformal Quantile Regression (CQR) and related techniques, often yield overly conservative prediction intervals. In this work, we introduce a conformal inference approach to ITE using the conditional density of the outcome given the covariates. We leverage the reference distribution technique to efficiently estimate the conditional densities as the score functions under a two-stage conformal ITE framework. We show that our prediction intervals are not only marginally valid but are narrower than existing methods. Experimental results further validate the usefulness of our method.
- Abstract(参考訳): 多様な複雑なデータがアクセスしやすくなってきた時代において、個別治療効果(ITE)の正確な予測は、医療、経済学、公共政策などの分野において重要である。
現在の最先端のアプローチは、CQR(Conformal Quantile Regression)と関連する技術を通じて有効な予測間隔を提供する一方で、過度に保守的な予測間隔をもたらすことが多い。
本研究では,共変量による結果の条件密度を用いたITEに対する共形推論手法を提案する。
本手法は,2段階の共形ITEフレームワーク下でのスコア関数として条件密度を効率的に推定する。
予測間隔は, 限界的に有効であるだけでなく, 既存の手法よりも狭いことを示す。
実験により,本手法の有用性がさらに検証された。
関連論文リスト
- On the Role of Surrogates in Conformal Inference of Individual Causal Effects [0.0]
UnderlineEfficient IunderlineNdividual UnderlineCausal UnderlineEffects (SCIENCE) に対する UnderlineSurrogate-assisted Underline Conformal Underline Inference を導入する。
SCIENCEは、個々の治療効果(ITE)に対してより効率的な予測間隔を構築するために設計されたフレームワークである。
これは第3相であるModerna COVE COVID-19ワクチンの臨床試験に適用される。
論文 参考訳(メタデータ) (2024-12-16T21:36:11Z) - Conformal Thresholded Intervals for Efficient Regression [9.559062601251464]
Conformal Thresholded Intervals (CTI) は、カバー範囲が保証された最小限の予測セットを生成することを目的とした、新しいコンフォメーション回帰手法である。
CTIは、その長さに基づいて推定された条件間間隔をしきい値にすることで予測セットを構築する。
CTIは、様々なデータセットにわたる最先端のコンフォメーション回帰手法よりも優れた性能を達成している。
論文 参考訳(メタデータ) (2024-07-19T17:47:08Z) - Conformal Prediction for Causal Effects of Continuous Treatments [22.05182692864395]
本研究では, 連続処理の潜在的な結果に対する新しいコンフォメーション予測法を提案する。
共形予測区間が正当性スコアが未知であっても有効となるように、不確実性推定によって導入された追加的不確実性を考慮する。
我々の知る限りでは、確率スコアが不明で、データから推定しなければならない場合、我々は、継続的治療のための共形予測を最初に提案する。
論文 参考訳(メタデータ) (2024-07-03T13:34:33Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
分散シフトへの対処は、現代の機械学習における中心的な課題の1つだ。
歴史的情報を適切に再利用するオンライン手法を提案する。
我々の密度比推定法は, ダイナミックなリセットバウンドを楽しむことにより, 良好に動作できることが証明された。
論文 参考訳(メタデータ) (2023-02-06T04:03:33Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
コンフォーマルなオフ政治予測は、新しい目標ポリシーの下で、結果に対する信頼できる予測間隔を出力することができる。
理論上の有限サンプル保証は、標準的な文脈的バンディットの設定を超える追加の仮定をすることなく提供する。
論文 参考訳(メタデータ) (2022-06-09T10:39:33Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
条件平均治療効果(CATE)は、個々の因果効果の最適点予測である。
集約分析では、通常は分布処理効果(DTE)の測定によって対処される。
我々は,多種多様な問題に対して条件付きDTE(CDTE)を学習するための,新しい堅牢でモデルに依存しない手法を提供する。
論文 参考訳(メタデータ) (2022-05-23T17:40:31Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
強化学習における高信頼行動非依存のオフ政治評価について検討する。
様々なベンチマークにおいて、信頼区間推定が既存の手法よりも厳密で精度が高いことが示されている。
論文 参考訳(メタデータ) (2020-10-22T12:39:11Z) - Conformal Inference of Counterfactuals and Individual Treatment Effects [6.810856082577402]
そこで本研究では,反ファクトや個々の治療効果について,信頼できる間隔を推定できる共形推論に基づく手法を提案する。
既存の手法は、単純なモデルであってもかなりのカバレッジの欠陥に悩まされる。
論文 参考訳(メタデータ) (2020-06-11T01:03:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。