論文の概要: Conformal Prediction for Causal Effects of Continuous Treatments
- arxiv url: http://arxiv.org/abs/2407.03094v2
- Date: Wed, 23 Oct 2024 10:09:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:53:17.823910
- Title: Conformal Prediction for Causal Effects of Continuous Treatments
- Title(参考訳): 連続処理の因果効果のコンフォーマル予測
- Authors: Maresa Schröder, Dennis Frauen, Jonas Schweisthal, Konstantin Heß, Valentyn Melnychuk, Stefan Feuerriegel,
- Abstract要約: 本研究では, 連続処理の潜在的な結果に対する新しいコンフォメーション予測法を提案する。
共形予測区間が正当性スコアが未知であっても有効となるように、不確実性推定によって導入された追加的不確実性を考慮する。
我々の知る限りでは、確率スコアが不明で、データから推定しなければならない場合、我々は、継続的治療のための共形予測を最初に提案する。
- 参考スコア(独自算出の注目度): 22.05182692864395
- License:
- Abstract: Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
- Abstract(参考訳): 因果効果の不確かさの定量化は、パーソナライズド医療のような安全上重要な応用に不可欠である。
これに対する強力なアプローチは共形予測であり、モデルに依存しない有限サンプル保証のためにいくつかの実用的な利点がある。
しかし、因果効果の共形予測法は二項/離散的処理に限られており、既知確率スコアのような非常に限定的な仮定を行う。
本研究では,連続処理の潜在的な結果に対する新しいコンフォメーション予測法を提案する。
共形予測区間が正当性スコアが未知であっても有効となるように、不確実性推定によって導入された追加的不確実性を考慮する。
コントリビューションは次の3つである: 1) 連続処理の潜在的な結果に対する有限サンプル予測間隔を導出する。
2) 導出区間を計算するアルゴリズムを提案する。
(3) 合成および実世界のデータセットを用いた実験において, 共形予測間隔の有効性を示す。
我々の知る限りでは、確率スコアが不明で、データから推定しなければならない場合、我々は、継続的治療のための共形予測を最初に提案する。
関連論文リスト
- Learning Representations of Instruments for Partial Identification of Treatment Effects [23.811079163083303]
我々は任意の(潜在的に高次元の)機器を用いて条件平均処理効果(CATE)の限界を推定する。
本稿では,楽器を離散表現空間にマッピングする手法を提案する。
我々は、潜在楽器空間のニューラルネットワーク分割を調整し、厳密な境界を学習する2段階の手順を導出する。
論文 参考訳(メタデータ) (2024-10-11T16:48:32Z) - Conformal Prediction for Dose-Response Models with Continuous Treatments [0.23213238782019321]
本稿では,線量応答モデルに対する予測区間を生成する新しい手法を提案する。
重み付き共形予測においてカーネル関数を重みとして適用することにより,各処理値の局所的カバレッジを近似する。
論文 参考訳(メタデータ) (2024-09-30T15:40:54Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
本稿では,カーネルベースの2倍頑健な因果学習推定器を提案する。
オラクル形式は影響関数の一貫した近似であることを示す。
次に、平均二乗誤差の観点から総合収束解析を行う。
論文 参考訳(メタデータ) (2023-09-22T12:18:53Z) - On the Expected Size of Conformal Prediction Sets [24.161372736642157]
分割共形予測フレームワークを用いて,予測セットの予測サイズを理論的に定量化する。
この正確な定式化は通常直接計算できないので、点推定と高確率境界間隔を導出する。
回帰と分類の両問題に対する実世界のデータセットを用いた実験により,結果の有効性を裏付ける。
論文 参考訳(メタデータ) (2023-06-12T17:22:57Z) - Predicting the impact of treatments over time with uncertainty aware
neural differential equations [2.099922236065961]
本稿では,治療の効果を時間とともに予測する新しい手法であるCounterfactual ODEを提案する。
CF-ODEが従来よりも精度の高い予測と信頼性の高い不確実性推定を提供することを示す。
論文 参考訳(メタデータ) (2022-02-24T09:50:02Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Conformal Inference of Counterfactuals and Individual Treatment Effects [6.810856082577402]
そこで本研究では,反ファクトや個々の治療効果について,信頼できる間隔を推定できる共形推論に基づく手法を提案する。
既存の手法は、単純なモデルであってもかなりのカバレッジの欠陥に悩まされる。
論文 参考訳(メタデータ) (2020-06-11T01:03:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。