論文の概要: On the Role of Surrogates in Conformal Inference of Individual Causal Effects
- arxiv url: http://arxiv.org/abs/2412.12365v2
- Date: Tue, 21 Jan 2025 21:40:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:28:37.995535
- Title: On the Role of Surrogates in Conformal Inference of Individual Causal Effects
- Title(参考訳): 個人因果関係の等角的推論におけるサロゲートの役割について
- Authors: Chenyin Gao, Peter B. Gilbert, Larry Han,
- Abstract要約: UnderlineEfficient IunderlineNdividual UnderlineCausal UnderlineEffects (SCIENCE) に対する UnderlineSurrogate-assisted Underline Conformal Underline Inference を導入する。
SCIENCEは、個々の治療効果(ITE)に対してより効率的な予測間隔を構築するために設計されたフレームワークである。
これは第3相であるModerna COVE COVID-19ワクチンの臨床試験に適用される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Learning the Individual Treatment Effect (ITE) is essential for personalized decision-making, yet causal inference has traditionally focused on aggregated treatment effects. While integrating conformal prediction with causal inference can provide valid uncertainty quantification for ITEs, the resulting prediction intervals are often excessively wide, limiting their practical utility. To address this limitation, we introduce \underline{S}urrogate-assisted \underline{C}onformal \underline{I}nference for \underline{E}fficient I\underline{N}dividual \underline{C}ausal \underline{E}ffects (SCIENCE), a framework designed to construct more efficient prediction intervals for ITEs. SCIENCE accommodates the covariate shifts between source data and target data and applies to various data configurations, including semi-supervised and surrogate-assisted semi-supervised learning. Leveraging semi-parametric efficiency theory, SCIENCE produces rate double-robust prediction intervals under mild rate convergence conditions, permitting the use of flexible non-parametric models to estimate nuisance functions. We quantify efficiency gains by comparing semi-parametric efficiency bounds with and without the surrogates. Simulation studies demonstrate that our surrogate-assisted intervals offer substantial efficiency improvements over existing methods while maintaining valid group-conditional coverage. Applied to the phase 3 Moderna COVE COVID-19 vaccine trial, SCIENCE illustrates how multiple surrogate markers can be leveraged to generate more efficient prediction intervals.
- Abstract(参考訳): 個別治療効果(ITE)の学習は個人の意思決定に不可欠であるが、因果推論は伝統的に集約的治療効果に重点を置いてきた。
因果推論と共形予測を統合することで、ITTの妥当な不確実性定量化が可能になるが、その結果の予測間隔はしばしば過度に広くなり、実用性は制限される。
この制限に対処するため, ITE のより効率的な予測区間を構築するためのフレームワークである \underline{S}urrogate-assisted \underline{C}onformal \underline{I}nference for \underline{E}fficient I\underline{N}dividual \underline{C}ausal \underline{E}ffects (SCIENCE) を導入する。
SCIENCEは、ソースデータとターゲットデータ間の共変量シフトを許容し、半教師付きおよび補助的半教師付き学習を含む様々なデータ構成に適用する。
半パラメトリック効率理論を活用することで、SCIENCEは緩やかな速度収束条件下での速度二重ローバースト予測間隔を生成し、非パラメトリックなフレキシブルモデルを用いてニュアンス関数を推定することができる。
半パラメトリックな効率境界とサロゲートの有無を比較することで効率の利得を定量化する。
シミュレーション研究により,サロゲート支援間隔は,有効群条件範囲を維持しつつ,既存の手法よりも大幅に効率が向上することが示された。
第3相であるModerna COVE COVID-19ワクチンの臨床試験に応用されたSCIENCEは、複数のサロゲートマーカーをどのように活用してより効率的な予測間隔を生成するかを示した。
関連論文リスト
- Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
負の制御結果を用いて遅延不均一性を調整する頑健なポストインテグレート推論(PII)手法を提案する。
提案手法は,予測された直接効果推定値,隠された仲介者,共同設立者,モデレーターまで拡張する。
提案された二重頑健な推定器は、最小の仮定と潜在的な不特定性の下で一貫性があり、効率的である。
論文 参考訳(メタデータ) (2024-10-07T12:52:38Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
コンフォーマル予測(CP)は不確実性定量化のための頑健な枠組みである。
非交換性に対処するための既存のアプローチは、最も単純な例を超えて計算不可能なメソッドにつながる。
この研究は、比較的一般的な非交換可能なデータ分布に対して証明可能な信頼セットを生成する、CPに新しい効率的なアプローチを導入する。
論文 参考訳(メタデータ) (2023-12-25T20:02:51Z) - Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions [0.0]
FETWFE (Fused extended two-way fixed effect) を用いた1つのチューニングパラメータを持つ機械学習推定器を提案する。
適切な空間性仮定の下で、FETWFEは確率が1に傾向する正しい制限を特定し、効率を向上する。
シミュレーション研究におけるFETWFEの実証と実証応用について述べる。
論文 参考訳(メタデータ) (2023-12-10T20:16:39Z) - Semiparametric Efficient Inference in Adaptive Experiments [29.43493007296859]
本研究では, 治療や管理に対する課題の割り当てを規定する政策が, 時間とともに変化しうる連続的な実験において, 平均治療効果の効率的な推定の問題点を考察する。
まず、Adaptive Augmented Inverse-Probability Weighted estimator に対する中心極限定理について述べる。
次に、従来の手法よりもかなり厳密な確率性および漸近的信頼シーケンスの両方を導出した逐次推論設定を検討する。
論文 参考訳(メタデータ) (2023-11-30T06:25:06Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - A General Framework for Treatment Effect Estimation in Semi-Supervised and High Dimensional Settings [0.0]
我々は, より堅牢で, (2) 教師付きよりも効率的であるSS推定器群を開発した。
さらに、モデル内の正当性スコアが正しく指定されたときに、SS推定器のルート-n整合性と正規性を確立する。
我々の推定器は、すべてのニュアンス関数が正しく指定されている限り、半パラメトリックに効率的であることが示される。
論文 参考訳(メタデータ) (2022-01-03T04:12:44Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。