Context-Aware Neural Gradient Mapping for Fine-Grained Instruction Processing
- URL: http://arxiv.org/abs/2501.14936v1
- Date: Fri, 24 Jan 2025 21:49:24 GMT
- Title: Context-Aware Neural Gradient Mapping for Fine-Grained Instruction Processing
- Authors: David Boldo, Lily Pemberton, Gabriel Thistledown, Jacob Fairchild, Felix Kowalski,
- Abstract summary: This paper introduces a dynamic gradient adjustment mechanism, incorporating contextual embeddings directly into the optimization process.
The proposed framework consistently outperforms baseline models across various metrics, including accuracy, robustness to noise, and computational efficiency.
The integration of context-specific embeddings allows for a more complex understanding of language, thereby improving the model's ability to handle diverse linguistic phenomena.
- Score: 0.0
- License:
- Abstract: The integration of contextual embeddings into the optimization processes of large language models is an advancement in natural language processing. The Context-Aware Neural Gradient Mapping framework introduces a dynamic gradient adjustment mechanism, incorporating contextual embeddings directly into the optimization process. This approach facilitates real-time parameter adjustments, enhancing task-specific generalization even in the presence of sparse or noisy data inputs. The mathematical foundation of this framework relies on gradient descent modifications, where contextual embeddings are derived from a supplementary neural network trained to map input features to optimal adaptation gradients. By employing differential geometry principles, high-dimensional input dependencies are encoded into low-dimensional gradient manifolds, enabling efficient adaptation without necessitating the retraining of the entire model. Empirical evaluations demonstrate that the proposed framework consistently outperforms baseline models across various metrics, including accuracy, robustness to noise, and computational efficiency. The integration of context-specific embeddings allows for a more complex understanding of language, thereby improving the model's ability to handle diverse linguistic phenomena. Furthermore, the computational efficiency achieved through this method demonstrates its scalability for large-scale language models operating under diverse constraints.
Related papers
- Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces [0.0]
A structured gradient refinement framework was introduced to incorporate multi-scale contextual adjustments.
The hierarchical adjustment of weight updates provided an alternative to conventional backpropagation.
structured optimization strategies mitigated overfitting while preserving adaptability across heterogeneous text distributions.
arXiv Detail & Related papers (2025-02-06T22:57:40Z) - Contextually Entangled Gradient Mapping for Optimized LLM Comprehension [0.0]
Entually Entangled Gradient Mapping (CEGM) introduces a new approach to gradient optimization.
It treats gradients as dynamic carriers of contextual dependencies rather than isolated numerical entities.
The proposed methodology bridges critical gaps in existing optimization strategies.
arXiv Detail & Related papers (2025-01-28T11:50:35Z) - Semantic Layered Embedding Diffusion in Large Language Models for Multi-Contextual Consistency [0.0]
The Semantic Layered Embedding Diffusion (SLED) mechanism redefines the representation of hierarchical semantics within transformer-based architectures.
By introducing a multi-layered diffusion process grounded in spectral analysis, it achieves a complex balance between global and local semantic coherence.
Experimental results demonstrate significant improvements in perplexity and BLEU scores, emphasizing the mechanism's ability to adapt effectively across diverse domains.
arXiv Detail & Related papers (2025-01-26T05:17:04Z) - Architectural Fusion Through Contextual Partitioning in Large Language Models: A Novel Approach to Parameterized Knowledge Integration [0.0]
This paper introduces an innovative approach to enhancing the architectural design of large-scale computational models through the dynamic segmentation of parameters into context-aware regions.
Experimental evaluations demonstrate substantial improvements in accuracy, perplexity, and contextual coherence across a variety of linguistic tasks.
The findings collectively demonstrate the potential for Contextual Partitioning to redefine the scalability and adaptability of computational language architectures in diverse and complex domains.
arXiv Detail & Related papers (2025-01-22T14:21:04Z) - Efficiency optimization of large-scale language models based on deep learning in natural language processing tasks [6.596361762662328]
Internal structure and operation mechanism of large-scale language models are analyzed theoretically.
We evaluate the contribution of adaptive optimization algorithms (such as AdamW), massively parallel computing techniques, and mixed precision training strategies.
arXiv Detail & Related papers (2024-05-20T00:10:00Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - Efficient Differentiable Simulation of Articulated Bodies [89.64118042429287]
We present a method for efficient differentiable simulation of articulated bodies.
This enables integration of articulated body dynamics into deep learning frameworks.
We show that reinforcement learning with articulated systems can be accelerated using gradients provided by our method.
arXiv Detail & Related papers (2021-09-16T04:48:13Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
Generalizing across shapes with neural implicit representations amounts to learning priors over the respective function space.
We formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task.
arXiv Detail & Related papers (2020-06-17T05:14:53Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.