論文の概要: Personalized Layer Selection for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2501.14964v1
- Date: Fri, 24 Jan 2025 22:49:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:40.436221
- Title: Personalized Layer Selection for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのためのパーソナライズされた層選択
- Authors: Kartik Sharma, Vineeth Rakesh Mohan, Yingtong Dou, Srijan Kumar, Mahashweta Das,
- Abstract要約: グラフニューラルネットワーク(GNN)は、ノード周辺の局所グラフ構造の固定された粒度にノード属性を結合し、そのラベルを予測する。
本稿では,各ノードを分類する最適な表現層を選択するための新しいアルゴリズムMetSelect1を提案する。
10のデータセットと3つの異なるGNNの結果、GNNのノード分類精度をプラグ・アンド・プレイ方式で大幅に改善した。
- 参考スコア(独自算出の注目度): 24.201142695794157
- License:
- Abstract: Graph Neural Networks (GNNs) combine node attributes over a fixed granularity of the local graph structure around a node to predict its label. However, different nodes may relate to a node-level property with a different granularity of its local neighborhood, and using the same level of smoothing for all nodes can be detrimental to their classification. In this work, we challenge the common fact that a single GNN layer can classify all nodes of a graph by training GNNs with a distinct personalized layer for each node. Inspired by metric learning, we propose a novel algorithm, MetSelect1, to select the optimal representation layer to classify each node. In particular, we identify a prototype representation of each class in a transformed GNN layer and then, classify using the layer where the distance is smallest to a class prototype after normalizing with that layer's variance. Results on 10 datasets and 3 different GNNs show that we significantly improve the node classification accuracy of GNNs in a plug-and-play manner. We also find that using variable layers for prediction enables GNNs to be deeper and more robust to poisoning attacks. We hope this work can inspire future works to learn more adaptive and personalized graph representations.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、ノード周辺の局所グラフ構造の固定された粒度にノード属性を結合し、そのラベルを予測する。
しかし、異なるノードは、その局所的な近傍の粒度が異なるノードレベルの特性に関係しており、全てのノードに対して同じレベルの平滑化を使用することは、その分類に有害である。
本研究では,単一のGNN層がグラフのすべてのノードを分類できるという共通の事実に挑戦する。
距離学習にヒントを得て,各ノードを分類する最適な表現層を選択するための新しいアルゴリズムMetSelect1を提案する。
特に、変換されたGNN層における各クラスのプロトタイプ表現を識別し、その階層の分散を正規化した後、その距離がクラスプロトタイプに最小となる層を用いて分類する。
10のデータセットと3つの異なるGNNの結果、GNNのノード分類精度をプラグ・アンド・プレイ方式で大幅に改善した。
また、予測に可変層を用いることで、GNNはより深く、よりロバストになり、攻撃にも耐えられることがわかった。
この作業が、より適応的でパーソナライズされたグラフ表現を学ぶために、将来の作業に刺激を与えることを期待しています。
関連論文リスト
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - Contrastive Meta-Learning for Few-shot Node Classification [54.36506013228169]
少ないショットノード分類は、限定されたラベル付きノードのみを参照としてグラフ上のノードのラベルを予測することを目的としている。
グラフ上にCOSMICという新しい対照的なメタラーニングフレームワークを2つの重要な設計で作成する。
論文 参考訳(メタデータ) (2023-06-27T02:22:45Z) - Every Node Counts: Improving the Training of Graph Neural Networks on
Node Classification [9.539495585692007]
ノード分類のためのGNNのトレーニングのための新しい目的語を提案する。
我々の第一項は、ノードとラベルの特徴間の相互情報を最大化することを目的としている。
第2項は予測写像における異方的滑らか性を促進する。
論文 参考訳(メタデータ) (2022-11-29T23:25:14Z) - NDGGNET-A Node Independent Gate based Graph Neural Networks [6.155450481110693]
疎結合なノードでは、単一のGNN層を通して十分な情報を得るのは難しい。
この論文では、通常のGNNモデルでより多くのレイヤに対応可能な新しいフレームワークを定義する。
実験結果から,提案モデルがモデル深度を効果的に向上し,複数のデータセットで良好に動作できることが示唆された。
論文 参考訳(メタデータ) (2022-05-11T08:51:04Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
グラフニューラルネットワーク(GNN)は、しばしばグラフ分類において強いホモフィリを仮定し、ヘテロフィリを考えることは滅多にない。
We developed a novel GNN architecture called IHGNN (short for Incorporated Heterophily into Graph Neural Networks)
我々は、様々なグラフデータセット上でIHGNNを実証的に検証し、グラフ分類のための最先端のGNNよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T06:48:35Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
グラフニューラルネットワーク(GNN)は、ノードのエゴネットワークのトポロジとエゴネットワークのノードの特徴を考慮したノード表現を演算する。
ノードが高品質な機能を持っていない場合、GNNはノードの埋め込みを計算するために埋め込み層を学び、それらを入力機能として使用する。
この埋め込みレイヤに関連するメモリを削減するため、NLPやレコメンダシステムのようなアプリケーションで一般的に使用されるハッシュベースのアプローチが利用可能である。
本稿では,グラフ内のノードの位置を利用して,必要なメモリを大幅に削減する手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T22:42:25Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
グラフニューラルネットワーク(GNN)は、隣接するノードを集約することでノードの表現を学習する。
オーバースムーシングは、レイヤーの数が増えるにつれてGNNのパフォーマンスが制限される重要な問題のひとつです。
2つのオーバースムースなメトリクスと新しいテクニック、すなわち微分可能群正規化(DGN)を導入する。
論文 参考訳(メタデータ) (2020-06-12T07:18:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。