論文の概要: Using Large Language Models for education managements in Vietnamese with low resources
- arxiv url: http://arxiv.org/abs/2501.15022v1
- Date: Sat, 25 Jan 2025 02:09:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:59:43.776261
- Title: Using Large Language Models for education managements in Vietnamese with low resources
- Title(参考訳): 低資源ベトナムにおける教育管理における大規模言語モデルの利用
- Authors: Duc Do Minh, Vinh Nguyen Van, Thang Dam Cong,
- Abstract要約: 大規模言語モデル(LLM)は、2022年のChatGPTのリリース以来、様々なNLPタスクにおいて顕著な進歩を見せている。
ベトナムの教育管理業務に LLM を適用するためのフレームワークである VietEduFrame を提案する。
提案手法は, 既存の手法よりも精度と効率性が優れており, アンダーリソース環境における教育管理を改善するための, 有望なソリューションを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large language models (LLMs), such as GPT-4, Gemini 1.5, Claude 3.5 Sonnet, and Llama3, have demonstrated significant advancements in various NLP tasks since the release of ChatGPT in 2022. Despite their success, fine-tuning and deploying LLMs remain computationally expensive, especially in resource-constrained environments. In this paper, we proposed VietEduFrame, a framework specifically designed to apply LLMs to educational management tasks in Vietnamese institutions. Our key contribution includes the development of a tailored dataset, derived from student education documents at Hanoi VNU, which addresses the unique challenges faced by educational systems with limited resources. Through extensive experiments, we show that our approach outperforms existing methods in terms of accuracy and efficiency, offering a promising solution for improving educational management in under-resourced environments. While our framework leverages synthetic data to supplement real-world examples, we discuss potential limitations regarding broader applicability and robustness in future implementations.
- Abstract(参考訳): GPT-4、Gemini 1.5、Claude 3.5 Sonnet、Llama3のような大規模言語モデル(LLM)は、2022年のChatGPTのリリース以来、様々なNLPタスクにおいて大きな進歩を見せている。
その成功にもかかわらず、微調整と展開は、特に資源に制約のある環境では、計算コストが高いままである。
本稿では,ベトナムの教育管理業務に LLM を適用するためのフレームワークである VietEduFrame を提案する。
我々の重要な貢献は、限られたリソースを持つ教育システムによって直面する固有の課題に対処する、ハノイVNUの学生教育文書から派生した、調整されたデータセットの開発である。
大規模な実験を通じて,提案手法は既存の手法よりも精度と効率性が優れており,低リソース環境における教育管理を改善するための有望なソリューションを提供する。
本フレームワークは実世界の実例を補うために合成データを活用するが,今後の実装における適用性や堅牢性に関する潜在的な制限について論じる。
関連論文リスト
- Responsible Multilingual Large Language Models: A Survey of Development, Applications, and Societal Impact [5.803667039914564]
この作業は、実運用環境におけるMLLMの開発とデプロイのためのエンドツーエンドフレームワークを提供することによって、ギャップを埋める。
調査の結果,世界言語の88.38%が低資源言語に分類されるなど,言語多様性を支える上で重要な課題が明らかになった。
この調査は、より包括的で効果的な多言語AIシステムの開発に取り組んでいる実践者や研究者にとって不可欠なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-10-23T03:19:15Z) - Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
本稿では,マルコフ決定過程の動的状態を予測するために,事前学習した大規模言語モデルをどのように活用することができるかを検討する。
本稿では,モデルに基づく政策評価とデータ強化型オフ政治強化学習という2つの強化学習環境における概念実証の応用について述べる。
論文 参考訳(メタデータ) (2024-10-15T15:46:53Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
NVLM 1.0は、フロンティアクラスのマルチモーダル言語モデル(LLM)のファミリーであり、視覚言語タスクの最先端結果を実現する。
トレーニング効率とマルチモーダル推論能力を両立させる新しいアーキテクチャを提案する。
我々は、NVLM-1.0モデルのための生産級マルチモーダリティを開発し、視覚言語タスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T17:59:06Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Crossing Linguistic Horizons: Finetuning and Comprehensive Evaluation of Vietnamese Large Language Models [11.563813473794013]
オープンソースの大言語モデル(LLM)はベトナム語処理において限られた効果を示す。
これらの問題を緩和するため、ベトナム専用にLLMを微調整しました。
以上の結果より, ベトナムでは, 微調整LDMは理解能力と生成能力が向上していることが明らかとなった。
論文 参考訳(メタデータ) (2024-03-05T07:13:28Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
教師付きファインチューニング(SFT)、教師付きインストラクションチューニング(SIT)、インコンテキストラーニング(ICL)は、3つの代替であり、事実上の標準的アプローチである。
提案手法は,6つの高・低リソース言語,3つの異なるNLUタスク,多種多様な言語とドメインのセットアップを用いて,3つのアプローチを網羅的かつ体系的に比較する。
そこで本研究では,教師あり指導のチューニングが,性能とリソース要件の最良のトレードオフであることを示す。
論文 参考訳(メタデータ) (2024-03-04T10:48:13Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Efficient Finetuning Large Language Models For Vietnamese Chatbot [1.2075778142867704]
大規模言語モデル(LLM)は、様々な自然言語タスクにおいて顕著な性能を発揮することが示されている。
Alpaca、GPT4All、Chat-Doctorなど、オープンソースの大規模インストラクションフォローデータセットを活用しています。
我々は,低ランク適応(LoRA)によるパラメータ効率チューニングを2つのオープンLLM上で行い,その結果,Bloomz-Chat,Bloomz-Doctor,GPTJ-Chat,GPTJ-Doctorの4つのモデルを得た。
論文 参考訳(メタデータ) (2023-09-09T00:11:53Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z) - Knowledge-Augmented Reasoning Distillation for Small Language Models in
Knowledge-Intensive Tasks [90.11273439036455]
大規模言語モデル(LLM)は知識集約推論タスクにおいて有望なパフォーマンスを示している。
外部知識ベースから得られた知識を付加したLPMから理性を生成するための,小型LMを微調整する新しい手法であるKARDを提案する。
我々は,KARDが知識集約型推論データセットにおいて,小さなT5モデルとGPTモデルの性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2023-05-28T13:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。