OptiSeq: Ordering Examples On-The-Fly for In-Context Learning
- URL: http://arxiv.org/abs/2501.15030v2
- Date: Tue, 18 Feb 2025 19:00:03 GMT
- Title: OptiSeq: Ordering Examples On-The-Fly for In-Context Learning
- Authors: Rahul Atul Bhope, Praveen Venkateswaran, K. R. Jayaram, Vatche Isahagian, Vinod Muthusamy, Nalini Venkatasubramanian,
- Abstract summary: We introduce OptiSeq, a purely inference-time, dataset-free optimization method that efficiently determines the best example order.
We show that OptiSeq improves accuracy by 5.5 - 10.5 percentage points across multiple tasks.
- Score: 8.603219414567084
- License:
- Abstract: Developers using LLMs and LLM-based agents in their applications have provided plenty of anecdotal evidence that in-context-learning (ICL) is fragile. In this paper, we show that in addition to the quantity and quality of examples, the order in which the in-context examples are listed in the prompt affects the output of the LLM and, consequently, their performance. While prior work has explored improving ICL through dataset-dependent techniques, we introduce OptiSeq, a purely inference-time, dataset-free optimization method that efficiently determines the best example order. OptiSeq leverages log probabilities of LLM-generated outputs to systematically prune the search space of possible orderings and recommend the best order(s) by distinguishing orderings that yield high levels of accuracy and those that underperform. Extensive empirical evaluation on multiple LLMs, datasets, and prompts demonstrate that OptiSeq improves accuracy by 5.5 - 10.5 percentage points across multiple tasks.
Related papers
- The Unreasonable Effectiveness of LLMs for Query Optimization [4.50924404547119]
We show that embeddings of query text contain useful semantic information for query optimization.
We show that a simple binary deciding between alternative query plans, trained on a small number of embedded query vectors, can outperform existing systems.
arXiv Detail & Related papers (2024-11-05T07:10:00Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected.
Recent advancements enable end-to-end optimization of these parameters using an LLM.
This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems.
arXiv Detail & Related papers (2024-10-21T18:06:25Z) - In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
In-context learning of large language models (LLMs) makes predictions only based on instructions augmented with a few examples.
Existing example selection methods for ICL utilize sparse or dense retrievers and derive effective performance.
We propose our policy-based reinforcement learning framework for example selection (RLS), which consists of a language model (LM) selector and an LLM generator.
arXiv Detail & Related papers (2024-08-23T12:32:12Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
Large language models (LLMs) have seen widespread adoption due to their remarkable performance across various applications.
These individual LLMs show limitations in generalization and performance on complex tasks due to inherent training biases, model size constraints, and the quality or diversity of pre-training datasets.
We introduce SelectLLM, which efficiently directs input queries to the most suitable subset of LLMs from a large pool.
arXiv Detail & Related papers (2024-08-16T06:11:21Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Is In-Context Learning Sufficient for Instruction Following in LLMs? [38.29072578390376]
We show that, while effective, ICL alignment withAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench.
We provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime.
arXiv Detail & Related papers (2024-05-30T09:28:56Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
Large language models (LLMs) have shown impressive capabilities in real-world applications.
The quality of these exemplars in the prompt greatly impacts performance.
Existing methods fail to adequately account for the impact of exemplar ordering on the performance.
arXiv Detail & Related papers (2024-05-25T08:23:05Z) - More Samples or More Prompts? Exploring Effective In-Context Sampling for LLM Few-Shot Prompt Engineering [35.086135550672864]
We propose In-Context Sampling (ICS) to produce confident predictions by optimizing the construction of multiple ICL prompt inputs.
An in-depth evaluation with three data similarity-based ICS strategies suggests that these strategies can further elevate LLM's performance.
arXiv Detail & Related papers (2023-11-16T11:02:49Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.