EvoRL: A GPU-accelerated Framework for Evolutionary Reinforcement Learning
- URL: http://arxiv.org/abs/2501.15129v2
- Date: Sun, 02 Feb 2025 09:28:32 GMT
- Title: EvoRL: A GPU-accelerated Framework for Evolutionary Reinforcement Learning
- Authors: Bowen Zheng, Ran Cheng, Kay Chen Tan,
- Abstract summary: We introduce $texttt$textbfEvoRL$$, the first end-to-end EvoRL framework optimized for GPU acceleration.
The framework executes the entire training pipeline on accelerators, including environment simulations and EC processes.
- Score: 24.389896398264202
- License:
- Abstract: Evolutionary Reinforcement Learning (EvoRL) has emerged as a promising approach to overcoming the limitations of traditional reinforcement learning (RL) by integrating the Evolutionary Computation (EC) paradigm with RL. However, the population-based nature of EC significantly increases computational costs, thereby restricting the exploration of algorithmic design choices and scalability in large-scale settings. To address this challenge, we introduce $\texttt{$\textbf{EvoRL}$}$, the first end-to-end EvoRL framework optimized for GPU acceleration. The framework executes the entire training pipeline on accelerators, including environment simulations and EC processes, leveraging hierarchical parallelism through vectorization and compilation techniques to achieve superior speed and scalability. This design enables the efficient training of large populations on a single machine. In addition to its performance-oriented design, $\texttt{$\textbf{EvoRL}$}$ offers a comprehensive platform for EvoRL research, encompassing implementations of traditional RL algorithms (e.g., A2C, PPO, DDPG, TD3, SAC), Evolutionary Algorithms (e.g., CMA-ES, OpenES, ARS), and hybrid EvoRL paradigms such as Evolutionary-guided RL (e.g., ERL, CEM-RL) and Population-Based AutoRL (e.g., PBT). The framework's modular architecture and user-friendly interface allow researchers to seamlessly integrate new components, customize algorithms, and conduct fair benchmarking and ablation studies. The project is open-source and available at: https://github.com/EMI-Group/evorl.
Related papers
- Vintix: Action Model via In-Context Reinforcement Learning [72.65703565352769]
We present the first steps toward scaling ICRL by introducing a fixed, cross-domain model capable of learning behaviors through in-context reinforcement learning.
Our results demonstrate that Algorithm Distillation, a framework designed to facilitate ICRL, offers a compelling and competitive alternative to expert distillation to construct versatile action models.
arXiv Detail & Related papers (2025-01-31T18:57:08Z) - PCGRL+: Scaling, Control and Generalization in Reinforcement Learning Level Generators [2.334978724544296]
Procedural Content Generation via Reinforcement Learning (PCGRL) has been introduced as a means by which controllable designer agents can be trained.
PCGRL offers a unique set of affordances for game designers, but it is constrained by the compute-intensive process of training RL agents.
We implement several PCGRL environments in Jax so that all aspects of learning and simulation happen in parallel on the GPU.
arXiv Detail & Related papers (2024-08-22T16:30:24Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.
In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.
We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach [11.11570399751075]
This research presents a novel framework that harnesses the potential of Deep Reinforcement Learning (DRL)
The integration of our DRL agent with the RAY platform facilitates the creation of RLlib-IMPALA, a novel framework that efficiently uses RAY's resources to improve system adaptability and control.
arXiv Detail & Related papers (2024-02-24T23:25:35Z) - Discovering General Reinforcement Learning Algorithms with Adversarial
Environment Design [54.39859618450935]
We show that it is possible to meta-learn update rules, with the hope of discovering algorithms that can perform well on a wide range of RL tasks.
Despite impressive initial results from algorithms such as Learned Policy Gradient (LPG), there remains a gap when these algorithms are applied to unseen environments.
In this work, we examine how characteristics of the meta-supervised-training distribution impact the performance of these algorithms.
arXiv Detail & Related papers (2023-10-04T12:52:56Z) - RLLTE: Long-Term Evolution Project of Reinforcement Learning [45.88099757610731]
We present RLLTE: a long-term evolution, extremely modular, and open-source framework for reinforcement learning (RL) research and application.
Beyond delivering top-notch algorithm implementations, RLLTE also serves as a toolkit for developing algorithms.
RLLTE is expected to set standards for RL engineering practice and be highly stimulative for industry and academia.
arXiv Detail & Related papers (2023-09-28T12:30:37Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - BiERL: A Meta Evolutionary Reinforcement Learning Framework via Bilevel
Optimization [34.24884427152513]
We propose a general meta ERL framework via bilevel optimization (BiERL)
We design an elegant meta-level architecture that embeds the inner-level's evolving experience into an informative population representation.
We perform extensive experiments in MuJoCo and Box2D tasks to verify that as a general framework, BiERL outperforms various baselines and consistently improves the learning performance for a diversity of ERL algorithms.
arXiv Detail & Related papers (2023-08-01T09:31:51Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformer, originally devised for natural language processing, has also attested significant success in computer vision.
We group existing developments in two categories: architecture enhancement and trajectory optimization.
We examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving.
arXiv Detail & Related papers (2022-12-29T03:15:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.