Dual Frequency Branch Framework with Reconstructed Sliding Windows Attention for AI-Generated Image Detection
- URL: http://arxiv.org/abs/2501.15253v2
- Date: Sun, 27 Jul 2025 06:19:53 GMT
- Title: Dual Frequency Branch Framework with Reconstructed Sliding Windows Attention for AI-Generated Image Detection
- Authors: Jiazhen Yan, Ziqiang Li, Fan Wang, Ziwen He, Zhangjie Fu,
- Abstract summary: Generative Adversarial Networks (GANs) and diffusion models have enabled the creation of highly realistic synthetic images.<n>Generative Adversarial Networks (GANs) and diffusion models have enabled the creation of highly realistic synthetic images.<n> detecting AI-generated images has emerged as a critical challenge.
- Score: 12.523297358258345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of Generative Adversarial Networks (GANs) and diffusion models has enabled the creation of highly realistic synthetic images, presenting significant societal risks, such as misinformation and deception. As a result, detecting AI-generated images has emerged as a critical challenge. Existing researches emphasize extracting fine-grained features to enhance detector generalization, yet they often lack consideration for the importance and interdependencies of internal elements within local regions and are limited to a single frequency domain, hindering the capture of general forgery traces. To overcome the aforementioned limitations, we first utilize a sliding window to restrict the attention mechanism to a local window, and reconstruct the features within the window to model the relationships between neighboring internal elements within the local region. Then, we design a dual frequency domain branch framework consisting of four frequency domain subbands of DWT and the phase part of FFT to enrich the extraction of local forgery features from different perspectives. Through feature enrichment of dual frequency domain branches and fine-grained feature extraction of reconstruction sliding window attention, our method achieves superior generalization detection capabilities on both GAN and diffusion model-based generative images. Evaluated on diverse datasets comprising images from 65 distinct generative models, our approach achieves a 2.13\% improvement in detection accuracy over state-of-the-art methods.
Related papers
- Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management.<n>Most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions.<n>We observe that frequency-domain feature modeling particularly in the wavelet domain amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain.
arXiv Detail & Related papers (2025-08-07T11:14:16Z) - NS-Net: Decoupling CLIP Semantic Information through NULL-Space for Generalizable AI-Generated Image Detection [14.7077339945096]
NS-Net is a novel framework that decouples semantic information from CLIP's visual features, followed by contrastive learning to capture intrinsic distributional differences between real and generated images.<n>Experiments show that NS-Net outperforms existing state-of-the-art methods, achieving a 7.4% improvement in detection accuracy.
arXiv Detail & Related papers (2025-08-02T07:58:15Z) - Towards Imperceptible JPEG Image Hiding: Multi-range Representations-driven Adversarial Stego Generation [19.5984577708016]
We propose a multi-range representations-driven adversarial stego generation framework called MRAG for JPEG image hiding.<n>MRAG integrates the local-range characteristic of the convolution and the global-range modeling of the transformer.<n>It computes the adversarial loss between covers and stegos based on the surrogate steganalyzer's classified features.
arXiv Detail & Related papers (2025-07-11T06:45:07Z) - DSwinIR: Rethinking Window-based Attention for Image Restoration [109.38288333994407]
We propose the Deformable Sliding Window Transformer (DSwinIR) as a new foundational backbone architecture for image restoration.<n>At the heart of DSwinIR is the proposed novel Deformable Sliding Window (DSwin) Attention.<n>Extensive experiments show that DSwinIR sets a new state-of-the-art across a wide spectrum of image restoration tasks.
arXiv Detail & Related papers (2025-04-07T09:24:41Z) - D2Fusion: Dual-domain Fusion with Feature Superposition for Deepfake Detection [5.281969205292727]
Current Deepfake detection methods fail to thoroughly explore artifact information across different domains.
We introduce a novel bi-directional attention module to capture the local positional information of artifact clues from the spatial domain.
By doing so, we can obtain high-frequency information in the fine-grained features, which contains the global and subtle forgery information.
arXiv Detail & Related papers (2025-03-21T14:31:33Z) - Object Style Diffusion for Generalized Object Detection in Urban Scene [69.04189353993907]
We introduce a novel single-domain object detection generalization method, named GoDiff.<n>By integrating pseudo-target domain data with source domain data, we diversify the training dataset.<n> Experimental results demonstrate that our method not only enhances the generalization ability of existing detectors but also functions as a plug-and-play enhancement for other single-domain generalization methods.
arXiv Detail & Related papers (2024-12-18T13:03:00Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions.
We introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies.
arXiv Detail & Related papers (2024-08-31T10:03:19Z) - DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
We construct a DA-HFNet forged image dataset guided by text or image-assisted GAN and Diffusion model.
Our goal is to utilize a hierarchical progressive network to capture forged artifacts at different scales for detection and localization.
arXiv Detail & Related papers (2024-06-03T16:13:33Z) - A Dual Domain Multi-exposure Image Fusion Network based on the
Spatial-Frequency Integration [57.14745782076976]
Multi-exposure image fusion aims to generate a single high-dynamic image by integrating images with different exposures.
We propose a novelty perspective on multi-exposure image fusion via the Spatial-Frequency Integration Framework, named MEF-SFI.
Our method achieves visual-appealing fusion results against state-of-the-art multi-exposure image fusion approaches.
arXiv Detail & Related papers (2023-12-17T04:45:15Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Unified Frequency-Assisted Transformer Framework for Detecting and
Grounding Multi-Modal Manipulation [109.1912721224697]
We present the Unified Frequency-Assisted transFormer framework, named UFAFormer, to address the DGM4 problem.
By leveraging the discrete wavelet transform, we decompose images into several frequency sub-bands, capturing rich face forgery artifacts.
Our proposed frequency encoder, incorporating intra-band and inter-band self-attentions, explicitly aggregates forgery features within and across diverse sub-bands.
arXiv Detail & Related papers (2023-09-18T11:06:42Z) - SuperGF: Unifying Local and Global Features for Visual Localization [13.869227429939423]
SuperGF is a transformer-based aggregation model that operates directly on image-matching-specific local features.
We provide implementations of SuperGF using various types of local features, including dense and sparse learning-based or hand-crafted descriptors.
arXiv Detail & Related papers (2022-12-23T13:48:07Z) - GLFF: Global and Local Feature Fusion for AI-synthesized Image Detection [29.118321046339656]
We propose a framework to learn rich and discriminative representations by combining multi-scale global features from the whole image with refined local features from informative patches for AI synthesized image detection.
GLFF fuses information from two branches: the global branch to extract multi-scale semantic features and the local branch to select informative patches for detailed local artifacts extraction.
arXiv Detail & Related papers (2022-11-16T02:03:20Z) - Cross-Domain Local Characteristic Enhanced Deepfake Video Detection [18.430287055542315]
Deepfake detection has attracted increasing attention due to security concerns.
Many detectors cannot achieve accurate results when detecting unseen manipulations.
We propose a novel pipeline, Cross-Domain Local Forensics, for more general deepfake video detection.
arXiv Detail & Related papers (2022-11-07T07:44:09Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Delving into Sequential Patches for Deepfake Detection [64.19468088546743]
Recent advances in face forgery techniques produce nearly untraceable deepfake videos, which could be leveraged with malicious intentions.
Previous studies has identified the importance of local low-level cues and temporal information in pursuit to generalize well across deepfake methods.
We propose the Local- & Temporal-aware Transformer-based Deepfake Detection framework, which adopts a local-to-global learning protocol.
arXiv Detail & Related papers (2022-07-06T16:46:30Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z) - An Entropy-guided Reinforced Partial Convolutional Network for Zero-Shot
Learning [77.72330187258498]
We propose a novel Entropy-guided Reinforced Partial Convolutional Network (ERPCNet)
ERPCNet extracts and aggregates localities based on semantic relevance and visual correlations without human-annotated regions.
It not only discovers global-cooperative localities dynamically but also converges faster for policy gradient optimization.
arXiv Detail & Related papers (2021-11-03T11:13:13Z) - Local Relation Learning for Face Forgery Detection [73.73130683091154]
We propose a novel perspective of face forgery detection via local relation learning.
Specifically, we propose a Multi-scale Patch Similarity Module (MPSM), which measures the similarity between features of local regions.
We also propose an RGB-Frequency Attention Module (RFAM) to fuse information in both RGB and frequency domains for more comprehensive local feature representation.
arXiv Detail & Related papers (2021-05-06T10:44:32Z) - Video Salient Object Detection via Adaptive Local-Global Refinement [7.723369608197167]
Video salient object detection (VSOD) is an important task in many vision applications.
We propose an adaptive local-global refinement framework for VSOD.
We show that our weighting methodology can further exploit the feature correlations, thus driving the network to learn more discriminative feature representation.
arXiv Detail & Related papers (2021-04-29T14:14:11Z) - Change Detection in Synthetic Aperture Radar Images Using a Dual-Domain
Network [33.50775914682585]
Change detection from synthetic aperture radar (SAR) imagery is a critical yet challenging task.
Existing methods mainly focus on feature extraction in spatial domain, and little attention has been paid to frequency domain.
We propose a Dual-Domain Network to tackle the above two challenges.
arXiv Detail & Related papers (2021-04-14T08:41:48Z) - Gait Recognition via Effective Global-Local Feature Representation and
Local Temporal Aggregation [28.721376937882958]
Gait recognition is one of the most important biometric technologies and has been applied in many fields.
Recent gait recognition frameworks represent each gait frame by descriptors extracted from either global appearances or local regions of humans.
We propose a novel feature extraction and fusion framework to achieve discriminative feature representations for gait recognition.
arXiv Detail & Related papers (2020-11-03T04:07:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.