論文の概要: Enhancing Internet of Things Security throughSelf-Supervised Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2412.13240v1
- Date: Tue, 17 Dec 2024 17:40:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:49:33.211050
- Title: Enhancing Internet of Things Security throughSelf-Supervised Graph Neural Networks
- Title(参考訳): 自己監督型グラフニューラルネットワークによるモノのインターネットセキュリティの強化
- Authors: Safa Ben Atitallah, Maha Driss, Wadii Boulila, Anis Koubaa,
- Abstract要約: 新しいタイプの攻撃は、通常攻撃よりもはるかに少ないサンプルを持ち、不均衡なデータセットにつながることが多い。
マルコフグラフ畳み込みネットワーク(MarkovGCN)を用いた自己教師付き学習(SSL)によるIoT侵入検出の新しいアプローチを提案する。
当社のアプローチでは,IoTネットワーク固有の構造を活用してGCNを事前トレーニングし,侵入検出タスクを微調整する。
- 参考スコア(独自算出の注目度): 1.0678175996321808
- License:
- Abstract: With the rapid rise of the Internet of Things (IoT), ensuring the security of IoT devices has become essential. One of the primary challenges in this field is that new types of attacks often have significantly fewer samples than more common attacks, leading to unbalanced datasets. Existing research on detecting intrusions in these unbalanced labeled datasets primarily employs Convolutional Neural Networks (CNNs) or conventional Machine Learning (ML) models, which result in incomplete detection, especially for new attacks. To handle these challenges, we suggest a new approach to IoT intrusion detection using Self-Supervised Learning (SSL) with a Markov Graph Convolutional Network (MarkovGCN). Graph learning excels at modeling complex relationships within data, while SSL mitigates the issue of limited labeled data for emerging attacks. Our approach leverages the inherent structure of IoT networks to pre-train a GCN, which is then fine-tuned for the intrusion detection task. The integration of Markov chains in GCN uncovers network structures and enriches node and edge features with contextual information. Experimental results demonstrate that our approach significantly improves detection accuracy and robustness compared to conventional supervised learning methods. Using the EdgeIIoT-set dataset, we attained an accuracy of 98.68\%, a precision of 98.18%, a recall of 98.35%, and an F1-Score of 98.40%.
- Abstract(参考訳): IoT(Internet of Things)の急速な普及に伴い、IoTデバイスのセキュリティの確保が不可欠になっている。
この分野での大きな課題の1つは、新しいタイプの攻撃が一般的な攻撃よりもはるかに少ないサンプルを持ち、不均衡なデータセットにつながることである。
これらのアンバランスなラベル付きデータセットの侵入を検出する既存の研究は、主に畳み込みニューラルネットワーク(CNN)または従来の機械学習(ML)モデルを用いており、特に新しい攻撃に対して不完全な検出をもたらす。
これらの課題に対処するため,Markov Graph Convolutional Network (MarkovGCN) を用いた自己監視学習(SSL)を用いたIoT侵入検出の新しいアプローチを提案する。
グラフ学習はデータ内の複雑な関係をモデル化する上で優れており、SSLは新興攻撃に対するラベル付きデータの問題を軽減する。
当社のアプローチでは,IoTネットワーク固有の構造を活用してGCNを事前トレーニングし,侵入検出タスクを微調整する。
GCNにおけるマルコフ連鎖の統合により、ネットワーク構造が明らかになり、ノードとエッジの機能をコンテキスト情報で強化する。
実験により,本手法は従来の教師あり学習法と比較して検出精度とロバスト性を大幅に向上することが示された。
EdgeIIoTデータセットを使用して、精度98.68\%、精度98.18%、リコール98.35%、F1スコア98.40%に達した。
関連論文リスト
- FedMSE: Federated learning for IoT network intrusion detection [0.0]
IoTの台頭によりサイバー攻撃面が拡大し、データ可用性、計算リソース、転送コスト、特にプライバシ保護に関する懸念から、従来の集中型機械学習手法が不十分になった。
Shrink AutoencoderとCentroid One-class Classifier(SAE-CEN)を組み合わせた半教師付きフェデレーション学習モデルを開発した。
このアプローチは,通常のネットワークデータを効果的に表現し,分散戦略における異常を正確に識別することにより侵入検知性能を向上させる。
論文 参考訳(メタデータ) (2024-10-18T02:23:57Z) - Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks [50.87615167799367]
グラフニューラルネットワーク(GNN)は、特定のグラフのノード特徴をターゲットとして、バックドアを含む有毒な攻撃に対して認証する。
コンボリューションベースのGNNとPageRankベースのGNNの最悪の動作におけるグラフ構造の役割とその接続性に関する基本的な知見を提供する。
論文 参考訳(メタデータ) (2024-07-15T16:12:51Z) - Strengthening Network Intrusion Detection in IoT Environments with Self-Supervised Learning and Few Shot Learning [1.0678175996321808]
IoT(Internet of Things)は、インテリジェンスを日常のオブジェクトに統合するブレークスルー技術として紹介されている。
IoTネットワークが拡大し、拡大するにつれ、サイバーセキュリティ攻撃の影響を受けやすくなっている。
本稿では,これらの課題に対処する新しい侵入検知手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T06:30:22Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
提案モデルは,畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)ディープラーニング(DL)モデルを組み合わせて構成する。
この融合により、IoTトラフィックをバイナリカテゴリ、良性、悪意のあるアクティビティに検出し、分類することが可能になる。
提案モデルの精度は98.42%,最小損失は0.0275である。
論文 参考訳(メタデータ) (2024-05-28T22:12:15Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
侵入検知システム(IDS)は、悪意あるアクターや活動を検出することによって相互接続ネットワークを保護する上で重要な役割を果たす。
本稿では,データ不均衡にRandom Oversampling (RO) を用いる新しいMLベースのネットワーク侵入検出モデルと,次元削減のためのStacking Feature Embedding (PCA)を提案する。
CIC-IDS 2017データセットを使用すると、DT、RF、ETモデルは99.99%の精度に達し、DTとRFモデルはCIC-IDS 2018データセットで99.94%の精度が得られる。
論文 参考訳(メタデータ) (2024-01-22T05:49:41Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、Webやeコマースなどの分野でのパフォーマンスでますます認識されている。
本稿ではヘテロジニアスグラフに対する最初の専用グレーボックス回避手法であるHGAttackを紹介する。
論文 参考訳(メタデータ) (2024-01-18T12:47:13Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
ボットネットは、DDoS攻撃やスパムなど、多くのネットワーク攻撃の主要なソースとなっている。
本稿では,最新のディープラーニング技術を用いてボットネット検出のポリシーを自動学習するニューラルネットワーク設計の課題について考察する。
論文 参考訳(メタデータ) (2020-03-13T15:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。