論文の概要: Are Human Interactions Replicable by Generative Agents? A Case Study on Pronoun Usage in Hierarchical Interactions
- arxiv url: http://arxiv.org/abs/2501.15283v1
- Date: Sat, 25 Jan 2025 17:42:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:22.699269
- Title: Are Human Interactions Replicable by Generative Agents? A Case Study on Pronoun Usage in Hierarchical Interactions
- Title(参考訳): 人為的相互作用は生成因子によって補うことができるか? : 階層的相互作用における代名詞的利用の事例研究
- Authors: Naihao Deng, Rada Mihalcea,
- Abstract要約: 本研究では,Large Language Models (LLMs) エージェント間の相互作用が人間のものと類似しているかどうかを検討する。
評価の結果,LLMに基づくシミュレーションと人称代名詞の使い方の相違が明らかとなった。
我々は,そのような社会シミュレーションを実践者の意思決定プロセスに用いては,注意を喚起する。
- 参考スコア(独自算出の注目度): 29.139828718538418
- License:
- Abstract: As Large Language Models (LLMs) advance in their capabilities, researchers have increasingly employed them for social simulation. In this paper, we investigate whether interactions among LLM agents resemble those of humans. Specifically, we focus on the pronoun usage difference between leaders and non-leaders, examining whether the simulation would lead to human-like pronoun usage patterns during the LLMs' interactions. Our evaluation reveals the significant discrepancies between LLM-based simulations and human pronoun usage, with prompt-based or specialized agents failing to demonstrate human-like pronoun usage patterns. In addition, we reveal that even if LLMs understand the human pronoun usage patterns, they fail to demonstrate them in the actual interaction process. Our study highlights the limitations of social simulations based on LLM agents, urging caution in using such social simulation in practitioners' decision-making process.
- Abstract(参考訳): LLM(Large Language Models)の能力が向上するにつれて、研究者はそれらを社会シミュレーションに利用するようになった。
本稿では,LLMエージェント間の相互作用が人間のものと類似しているかどうかを考察する。
具体的には、リーダーと非リーダーの代名詞使用率の違いに着目し、シミュレーションがLLM間の相互作用において人間に似た代名詞使用パターンに繋がるかどうかを検討する。
評価の結果,LLMに基づくシミュレーションと人称代名詞の用法との間に有意な相違があることが判明した。
さらに, LLM が人間の代名詞使用パターンを理解できたとしても, 実際の対話プロセスにおいてその使用パターンを実証することができないことを明らかにした。
本研究は, LLMエージェントに基づく社会シミュレーションの限界を強調し, 実践者の意思決定プロセスにおける社会シミュレーションの利用に注意を促した。
関連論文リスト
- Can LLMs Simulate Social Media Engagement? A Study on Action-Guided Response Generation [51.44040615856536]
本稿では、行動誘導応答生成によるソーシャルメディアのエンゲージメントをシミュレートする大規模言語モデルの能力について分析する。
GPT-4o-mini,O1-mini,DeepSeek-R1をソーシャルメディアエンゲージメントシミュレーションで評価した。
論文 参考訳(メタデータ) (2025-02-17T17:43:08Z) - Spontaneous Emergence of Agent Individuality through Social Interactions in LLM-Based Communities [0.0]
本稿では,Large Language Model (LLM) ベースのエージェントを用いて,ゼロからエージェントが出現することを検討する。
このマルチエージェントシミュレーションを解析することにより、社会的規範、協力、性格特性が自然に出現する方法について、貴重な新しい知見を報告する。
論文 参考訳(メタデータ) (2024-11-05T16:49:33Z) - Real or Robotic? Assessing Whether LLMs Accurately Simulate Qualities of Human Responses in Dialogue [25.89926022671521]
我々はWildChatデータセットから10万対のLLM-LLMと人間-LLM対話の大規模データセットを生成する。
シミュレーションと人間のインタラクションの間には比較的低いアライメントが見られ、複数のテキストの性質に沿って体系的な相違が示される。
論文 参考訳(メタデータ) (2024-09-12T18:00:18Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
既存の作業は、複雑な推論タスクに対処し、人間のコミュニケーションを模倣する大規模言語モデルの能力を強調している。
そこで本研究では,LLMを用いて人工人体を合成し,サブリレーショナル・エージェント・ポリシーを学習する手法を提案する。
我々は,4つの単純なシナリオを通して,サブリレータリティをモデル化するフレームワークの能力について実験的に評価した。
論文 参考訳(メタデータ) (2024-02-13T19:46:39Z) - Systematic Biases in LLM Simulations of Debates [12.933509143906141]
人間の相互作用をシミュレートする際の大規模言語モデルの限界について検討する。
以上の結果から, LLMエージェントがモデル固有の社会的バイアスに適合する傾向が示唆された。
これらの結果は、エージェントがこれらのバイアスを克服するのに役立つ方法を開発するためのさらなる研究の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-06T14:51:55Z) - Do LLM Agents Exhibit Social Behavior? [5.094340963261968]
State-Understanding-Value-Action (SUVA) は、社会的文脈における応答を体系的に分析するフレームワークである。
最終決定とそれにつながる反応生成プロセスの両方を通じて社会的行動を評価する。
発話に基づく推論がLLMの最終動作を確実に予測できることを実証する。
論文 参考訳(メタデータ) (2023-12-23T08:46:53Z) - Divergences between Language Models and Human Brains [59.100552839650774]
我々は,人間と機械語処理の相違点を体系的に探求する。
我々は、LMがうまく捉えられない2つの領域、社会的/感情的知性と身体的常識を識別する。
以上の結果から,これらの領域における微調整LMは,ヒト脳反応との整合性を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-11-15T19:02:40Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
大規模言語モデル(LLM)が人間の反応バイアスをどの程度反映しているかについて検討する。
アンケート調査では, LLMが人間のような応答バイアスを示すかどうかを評価するためのデータセットとフレームワークを設計した。
9つのモデルに対する総合的な評価は、一般のオープンかつ商用のLCMは、一般的に人間のような振る舞いを反映しないことを示している。
論文 参考訳(メタデータ) (2023-11-07T15:40:43Z) - CoMPosT: Characterizing and Evaluating Caricature in LLM Simulations [61.9212914612875]
本研究では,LLMシミュレーションを4次元(コンテキスト,モデル,ペルソナ,トピック)で特徴付けるフレームワークを提案する。
我々は,この枠組みを用いて,オープンエンドLLMシミュレーションのキャラクチュアへの感受性を測定する。
GPT-4では、特定の人口動態(政治的・疎外化グループ)と話題(一般には非論争的)のシミュレーションは、似顔絵に非常に敏感であることが判明した。
論文 参考訳(メタデータ) (2023-10-17T18:00:25Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。