On the Discrimination and Consistency for Exemplar-Free Class Incremental Learning
- URL: http://arxiv.org/abs/2501.15454v1
- Date: Sun, 26 Jan 2025 08:50:33 GMT
- Title: On the Discrimination and Consistency for Exemplar-Free Class Incremental Learning
- Authors: Tianqi Wang, Jingcai Guo, Depeng Li, Zhi Chen,
- Abstract summary: Exemplar-free class incremental learning (EF-CIL) is a nontrivial task that requires continuously enriching model capability with new classes while maintaining previously learned knowledge without storing and replaying any old class exemplars.
An emerging theory-guided framework for CIL trains task-specific models for a shared network, shifting the pressure of forgetting to task-id prediction.
In EF-CIL, task-id prediction is more challenging due to the lack of inter-task interaction (e.g., replays of exemplars)
- Score: 19.898602404329697
- License:
- Abstract: Exemplar-free class incremental learning (EF-CIL) is a nontrivial task that requires continuously enriching model capability with new classes while maintaining previously learned knowledge without storing and replaying any old class exemplars. An emerging theory-guided framework for CIL trains task-specific models for a shared network, shifting the pressure of forgetting to task-id prediction. In EF-CIL, task-id prediction is more challenging due to the lack of inter-task interaction (e.g., replays of exemplars). To address this issue, we conduct a theoretical analysis of the importance and feasibility of preserving a discriminative and consistent feature space, upon which we propose a novel method termed DCNet. Concretely, it progressively maps class representations into a hyperspherical space, in which different classes are orthogonally distributed to achieve ample inter-class separation. Meanwhile, it also introduces compensatory training to adaptively adjust supervision intensity, thereby aligning the degree of intra-class aggregation. Extensive experiments and theoretical analysis verified the superiority of the proposed DCNet.
Related papers
- Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective [125.00228936051657]
We introduce NTK-CL, a novel framework that eliminates task-specific parameter storage while adaptively generating task-relevant features.
By fine-tuning optimizable parameters with appropriate regularization, NTK-CL achieves state-of-the-art performance on established PEFT-CL benchmarks.
arXiv Detail & Related papers (2024-07-24T09:30:04Z) - Tendency-driven Mutual Exclusivity for Weakly Supervised Incremental Semantic Segmentation [56.1776710527814]
Weakly Incremental Learning for Semantic (WILSS) leverages a pre-trained segmentation model to segment new classes using cost-effective and readily available image-level labels.
A prevailing way to solve WILSS is the generation of seed areas for each new class, serving as a form of pixel-level supervision.
We propose an innovative, tendency-driven relationship of mutual exclusivity, meticulously tailored to govern the behavior of the seed areas.
arXiv Detail & Related papers (2024-04-18T08:23:24Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
We study the impact of the trade-off between the intra-class diversity (the number of samples per class) and the inter-class diversity (the number of classes) of a supervised pre-training dataset.
With the size of the pre-training dataset fixed, the best downstream performance comes with a balance on the intra-/inter-class diversity.
arXiv Detail & Related papers (2023-05-20T16:23:50Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Task-Free Continual Learning via Online Discrepancy Distance Learning [11.540150938141034]
This paper develops a new theoretical analysis framework which provides generalization bounds based on the discrepancy distance between the visited samples and the entire information made available for training the model.
Inspired by this theoretical model, we propose a new approach enabled by the dynamic component expansion mechanism for a mixture model, namely the Online Discrepancy Distance Learning (ODDL)
arXiv Detail & Related papers (2022-10-12T20:44:09Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - Incremental Few-Shot Learning via Implanting and Compressing [13.122771115838523]
Incremental Few-Shot Learning requires a model to continually learn novel classes from only a few examples.
We propose a two-step learning strategy referred to as textbfImplanting and textbfCompressing.
Specifically, in the textbfImplanting step, we propose to mimic the data distribution of novel classes with the assistance of data-abundant base set.
In the textbf step, we adapt the feature extractor to precisely represent each novel class for enhancing intra-class compactness.
arXiv Detail & Related papers (2022-03-19T11:04:43Z) - Analyzing Overfitting under Class Imbalance in Neural Networks for Image
Segmentation [19.259574003403998]
In image segmentation neural networks may overfit to the foreground samples from small structures.
In this study, we provide new insights on the problem of overfitting under class imbalance by inspecting the network behavior.
arXiv Detail & Related papers (2021-02-20T14:57:58Z) - Unsupervised Transfer Learning for Spatiotemporal Predictive Networks [90.67309545798224]
We study how to transfer knowledge from a zoo of unsupervisedly learned models towards another network.
Our motivation is that models are expected to understand complex dynamics from different sources.
Our approach yields significant improvements on three benchmarks fortemporal prediction, and benefits the target even from less relevant ones.
arXiv Detail & Related papers (2020-09-24T15:40:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.