論文の概要: CISOL: An Open and Extensible Dataset for Table Structure Recognition in the Construction Industry
- arxiv url: http://arxiv.org/abs/2501.15469v1
- Date: Sun, 26 Jan 2025 10:16:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:56:29.117399
- Title: CISOL: An Open and Extensible Dataset for Table Structure Recognition in the Construction Industry
- Title(参考訳): 建設業における表構造認識のためのオープンで拡張可能なデータセットCISOL
- Authors: David Tschirschwitz, Volker Rodehorst,
- Abstract要約: 本稿では,CISOLデータセットについて紹介する。
CISOLは貴重な新しい研究リソースを提供し、多様なデータセットを持つことの重要性を強調している。
データセットには、800以上のドキュメントイメージに12万以上のアノテーション付きインスタンスが含まれている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Reproducibility and replicability are critical pillars of empirical research, particularly in machine learning, where they depend not only on the availability of models, but also on the datasets used to train and evaluate those models. In this paper, we introduce the Construction Industry Steel Ordering List (CISOL) dataset, which was developed with a focus on transparency to ensure reproducibility, replicability, and extensibility. CISOL provides a valuable new research resource and highlights the importance of having diverse datasets, even in niche application domains such as table extraction in civil engineering. CISOL is unique in that it contains real-world civil engineering documents from industry, making it a distinctive contribution to the field. The dataset contains more than 120,000 annotated instances in over 800 document images, positioning it as a medium-sized dataset that provides a robust foundation for Table Structure Recognition (TSR) and Table Detection (TD) tasks. Benchmarking results show that CISOL achieves 67.22 mAP@0.5:0.95:0.05 using the YOLOv8 model, outperforming the TSR-specific TATR model. This highlights the effectiveness of CISOL as a benchmark for advancing TSR, especially in specialized domains.
- Abstract(参考訳): 再現性と複製性は、特に機械学習において、モデルの可用性だけでなく、モデルのトレーニングと評価に使用されるデータセットにも依存する経験的研究の重要な柱である。
本稿では, 再現性, 複製性, 拡張性を確保するために, 透明性を重視したCISOLデータセットを提案する。
CISOLは貴重な新しい研究リソースを提供し、土木工学におけるテーブル抽出のようなニッチなアプリケーションドメインにおいても、多様なデータセットを持つことの重要性を強調している。
CISOLは、産業の実際の土木工学文書を含むという点で特有であり、この分野に顕著な貢献をしている。
このデータセットには、800以上のドキュメントイメージに12万以上のアノテーション付きインスタンスが含まれており、テーブル構造認識(TSR)とテーブル検出(TD)タスクの堅牢な基盤を提供する中規模のデータセットとして位置付けられている。
CISOL は YOLOv8 モデルを用いて 67.22 mAP@0.5:0.95:0.05 を達成し,TSR 固有のTATR モデルを上回った。
このことは、特に特殊領域において、TSRの進歩のためのベンチマークとしてのCISOLの有効性を強調している。
関連論文リスト
- SciER: An Entity and Relation Extraction Dataset for Datasets, Methods, and Tasks in Scientific Documents [49.54155332262579]
我々は,科学論文のデータセット,メソッド,タスクに関連するエンティティに対して,新たなエンティティと関係抽出データセットをリリースする。
我々のデータセットには、24k以上のエンティティと12kの関係を持つ106の注釈付きフルテキストの科学出版物が含まれています。
論文 参考訳(メタデータ) (2024-10-28T15:56:49Z) - ArxivDIGESTables: Synthesizing Scientific Literature into Tables using Language Models [58.34560740973768]
本稿では,言語モデル(LM)を利用して文献レビュー表を生成するフレームワークを提案する。
ArXiv論文から抽出された2,228の文献レビューテーブルの新しいデータセットは、合計で7,542の論文を合成する。
我々は、LMが参照テーブルを再構築する能力を評価し、追加のコンテキストからこのタスクの利点を見出す。
論文 参考訳(メタデータ) (2024-10-25T18:31:50Z) - RelBench: A Benchmark for Deep Learning on Relational Databases [78.52438155603781]
本稿では,グラフニューラルネットワークを用いたデータベース上でタスクを解くための公開ベンチマークであるRelBenchを紹介する。
私たちはRelBenchを使って、ディープラーニングインフラストラクチャに関する初の総合的な研究を行っています。
RDLは、人間の作業量を1桁以上削減しながら、より良く学習する。
論文 参考訳(メタデータ) (2024-07-29T14:46:13Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - Enhancing Knowledge Retrieval with In-Context Learning and Semantic Search through Generative AI [3.9773527114058855]
本稿では,大規模言語モデルの生成能力とベクトルデータベースの高速かつ正確な検索能力を組み合わせた新しい手法を提案する。
開発したGTR(Generative Text Retrieval)は,非構造化データと構造化データの両方に適用可能である。
改良されたモデルであるGenerative Tabular Text Retrieval (GTR-T) は、大規模データベースクエリの効率を実証した。
論文 参考訳(メタデータ) (2024-06-13T23:08:06Z) - StructLM: Towards Building Generalist Models for Structured Knowledge Grounding [49.10029030628653]
大規模言語モデル(LLM)では、最先端(SoTA)モデルの背後にある構造化データラグを平均35%処理できる。
私たちは、MistralとCodeLlamaモデルファミリに基づいたStructLMと呼ばれる一連のモデルをトレーニングします。
我々のStructLMシリーズは、評価された18のデータセットのうち16のタスク固有モデルを超え、8つのSKGタスクに新しいSoTAパフォーマンスを確立する。
論文 参考訳(メタデータ) (2024-02-26T15:47:01Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Unveiling Document Structures with YOLOv5 Layout Detection [0.0]
本研究では,文書レイアウトの迅速同定と非構造化データの抽出を目的とした,最先端コンピュータビジョンモデルYOLOv5の利用について検討する。
主な目的は、文書レイアウトを効果的に認識し、構造化されていないデータを抽出できる自律システムを作ることである。
論文 参考訳(メタデータ) (2023-09-29T07:45:10Z) - Schema-Driven Information Extraction from Heterogeneous Tables [37.50854811537401]
本稿では、機械学習論文、化学文献、材料科学雑誌、ウェブページの4つの分野のテーブルからなるベンチマークを示す。
我々の実験は、タスク固有のパイプラインやラベルを必要とせずに、驚くほど競争力のあるパフォーマンスが達成できることを示した。
論文 参考訳(メタデータ) (2023-05-23T17:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。