論文の概要: Efficient Self-Supervised Grading of Prostate Cancer Pathology
- arxiv url: http://arxiv.org/abs/2501.15520v1
- Date: Sun, 26 Jan 2025 13:22:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:56:26.885416
- Title: Efficient Self-Supervised Grading of Prostate Cancer Pathology
- Title(参考訳): 前立腺癌病理の自己監督的描出能の検討
- Authors: Riddhasree Bhattacharyya, Surochita Pal Das, Sushmita Mitra,
- Abstract要約: 提案するフレームワークは,タスク固有の自己教師型学習モデルに基づく。
モデルは、順序回帰に基づくアプローチを用いてISUPグレーディングのタスクのために微調整される。
- 参考スコア(独自算出の注目度): 0.06554326244334867
- License:
- Abstract: Prostate cancer grading using the ISUP system (International Society of Urological Pathology) for treatment decisions is highly subjective and requires considerable expertise. Despite advances in computer-aided diagnosis systems, few have handled efficient ISUP grading on Whole Slide Images (WSIs) of prostate biopsies based only on slide-level labels. Some of the general challenges include managing gigapixel WSIs, obtaining patch-level annotations, and dealing with stain variability across centers. One of the main task-specific challenges faced by deep learning in ISUP grading, is the learning of patch-level features of Gleason patterns (GPs) based only on their slide labels. In this scenario, an efficient framework for ISUP grading is developed. The proposed TSOR is based on a novel Task-specific Self-supervised learning (SSL) model, which is fine-tuned using Ordinal Regression. Since the diversity of training samples plays a crucial role in SSL, a patch-level dataset is created to be relatively balanced w.r.t. the Gleason grades (GGs). This balanced dataset is used for pre-training, so that the model can effectively learn stain-agnostic features of the GP for better generalization. In medical image grading, it is desirable that misclassifications be as close as possible to the actual grade. From this perspective, the model is then fine-tuned for the task of ISUP grading using an ordinal regression-based approach. Experimental results on the most extensive multicenter prostate biopsies dataset (PANDA challenge), as well as the SICAP dataset, demonstrate the effectiveness of this novel framework compared to state-of-the-art methods.
- Abstract(参考訳): ISUPシステム(International Society of Urological Pathology)を用いた前立腺がんの診断は、非常に主観的であり、かなりの専門知識を必要とする。
コンピュータ支援診断システムの進歩にもかかわらず、スライドレベルラベルのみに基づく前立腺生検のWSI(Whole Slide Images)で効率的なISUPグレーティングを処理している例はほとんどない。
一般的な課題としては、ギガピクセルのWSIの管理、パッチレベルのアノテーションの取得、センタ間のステンディヴァラビリティの処理などがある。
ISUPグレーディングにおいてディープラーニングが直面しているタスク固有の課題の1つは、スライドラベルのみに基づいてGleasonパターン(GP)のパッチレベルの特徴を学習することである。
このシナリオでは、ISUPグレーティングのための効率的なフレームワークが開発されている。
提案したTSORは,タスク固有の自己教師付き学習(SSL)モデルに基づいている。
SSLではトレーニングサンプルの多様性が重要な役割を果たすため、Gleasonグレード(GG)と相対的にバランスをとるパッチレベルのデータセットが作成される。
このバランスの取れたデータセットは事前トレーニングに使用されるため、GPの染色非依存の特徴を効果的に学習し、より一般化することができる。
医用画像のグレーディングでは、誤分類が実際のグレードにできるだけ近いことが望ましい。
この観点から、モデルは順序回帰に基づくアプローチを用いてISUPグレーディングのタスクのために微調整される。
最も広範な多心性前立腺生検データセット(PANDA Challenge)とSICAPデータセットの実験結果は、最先端の手法と比較して、この新しいフレームワークの有効性を実証している。
関連論文リスト
- EP-SAM: Weakly Supervised Histopathology Segmentation via Enhanced Prompt with Segment Anything [3.760646312664378]
がんなどの疾患の病理診断は、従来、医師や病理医による形態学的特徴の評価に頼っていた。
近年,診断支援ツールとしてコンピュータ支援診断(CAD)システムの進歩が注目されている。
本稿では,クラスアクティベーションマップとSAMに基づく擬似ラベルを組み合わせ,弱教師付きセマンティックセマンティックセグメンテーション(WSSS)モデルを提案する。
論文 参考訳(メタデータ) (2024-10-17T14:55:09Z) - An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
本稿では,教師なし・弱教師付き学習によるWSIレベルラベルのみを用いた頚部細胞病理学WSI分類のための効率的なフレームワークを提案する。
CSDおよびFNAC 2019データセットで実施された実験は、提案手法が様々なMIL手法の性能を高め、最先端(SOTA)性能を達成することを示した。
論文 参考訳(メタデータ) (2024-07-16T08:21:54Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
我々は、全スライド画像のギガピクセルスケールの自己スーパービジョンのためのSlide Pre-trained Transformer (SPT)を提案する。
バイオメディカル・マイクロスコープ・データセットを用いて,5つの診断課題におけるSPT視覚表現のベンチマークを行った。
論文 参考訳(メタデータ) (2024-02-09T05:05:28Z) - Benchmarking Self-Supervised Learning on Diverse Pathology Datasets [10.868779327544688]
自己教師付き学習は、ラベルのないデータを活用する効果的な方法であることが示されている。
我々は、病理画像データに基づいてSSL事前トレーニングを行う最大規模の研究を行う。
核インスタンスセグメンテーションの課題に対してSSLを初めて適用する。
論文 参考訳(メタデータ) (2022-12-09T06:38:34Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - Weighted Ensembles for Active Learning with Adaptivity [60.84896785303314]
本稿では,ラベル付きデータに漸進的に適応した重み付きGPモデルのアンサンブルについて述べる。
この新しいEGPモデルに基づいて、不確実性および不一致ルールに基づいて、一連の取得関数が出現する。
適応的に重み付けされたEGPベースの取得関数のアンサンブルも、さらなる性能向上のために導入されている。
論文 参考訳(メタデータ) (2022-06-10T11:48:49Z) - Self-learning for weakly supervised Gleason grading of local patterns [6.97280833203187]
本稿では,自己学習CNNに基づく弱教師付きディープラーニングモデルを提案し,パッチレベルのパターンと生検レベルのスコアリングの両方を正確に行う。
提案手法はパッチレベルのGleasonグレーディングにおいて,大きなマージン差で教師付き手法よりも優れていることを実証的に実証した。
論文 参考訳(メタデータ) (2021-05-21T15:39:50Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
そこで本研究では,前立腺癌(PCa)の完全分類のための畳み込みニューラルネットワーク(CNN)を用いた自動分類法を提案する。
Patch-Based Image Reconstruction (PBIR) と呼ばれるデータ拡張手法が提案され,WSIの高分解能化と多様性の向上が図られた。
対象データセットへの事前学習モデルの適応性を高めるために,分布補正モジュールを開発した。
論文 参考訳(メタデータ) (2020-11-29T06:42:08Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z) - Adversarial Feature Hallucination Networks for Few-Shot Learning [84.31660118264514]
Adversarial Feature Hallucination Networks (AFHN) は条件付き Wasserstein Generative Adversarial Network (cWGAN) に基づいている。
合成された特徴の識別性と多様性を促進するために、2つの新規レギュレータがAFHNに組み込まれている。
論文 参考訳(メタデータ) (2020-03-30T02:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。