論文の概要: Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
- arxiv url: http://arxiv.org/abs/2501.15572v3
- Date: Sun, 20 Apr 2025 21:31:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-22 17:11:52.654126
- Title: Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
- Title(参考訳): 記憶効率」な合成3D合成逆境ネットワーク(gan)の最先端における臨床評価 : 胸部CTによる検討
- Authors: Mahshid Shiri, Chandra Bortolotto, Alessandro Bruno, Alessio Consonni, Daniela Maria Grasso, Leonardo Brizzi, Daniele Loiacono, Lorenzo Preda,
- Abstract要約: 本研究では,新しいメモリ効率GANアーキテクチャであるCRF-GANを紹介する。
このモデルの性能は、最先端階層型(HA)-GANモデルに対して評価される。
- 参考スコア(独自算出の注目度): 35.858837946090674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images, addressing the critical shortage of annotated data for training Artificial Intelligence systems. This study introduces CRF-GAN, a novel memory-efficient GAN architecture that enhances structural consistency in 3D medical image synthesis. Integrating Conditional Random Fields within a two-step generation process allows CRF-GAN improving spatial coherence while maintaining high-resolution image quality. The model's performance is evaluated against the state-of-the-art hierarchical (HA)-GAN model. Materials and Methods: We evaluate the performance of CRF-GAN against the HA-GAN model. The comparison between the two models was made through a quantitative evaluation, using FID and MMD metrics, and a qualitative evaluation, through a two-alternative forced choice (2AFC) test completed by a pool of 12 resident radiologists, to assess the realism of the generated images. Results: CRF-GAN outperformed HA-GAN with lower FID and MMD scores, indicating better image fidelity. The 2AFC test showed a significant preference for images generated by CRF-Gan over those generated by HA-GAN. Additionally, CRF-GAN demonstrated 9.34% lower memory usage and achieved up to 14.6% faster training speeds, offering substantial computational savings. Discussion: CRF-GAN model successfully generates high-resolution 3D medical images with non-inferior quality to conventional models, while being more memory-efficient and faster. The key objective was not only to lower the computational cost but also to reallocate the freed-up resources towards the creation of higher-resolution 3D imaging, which is still a critical factor limiting their direct clinical applicability. Moreover, unlike many previous studies, we combined qualitative and quantitative assessments to obtain a more holistic feedback on the model's performance.
- Abstract(参考訳): GAN(Generative Adversarial Networks)は、人工知能システムのトレーニングにおいて、注釈付きデータの重大な不足に対処するため、合成医療画像の生成にますます利用されている。
本研究では,3次元医用画像合成における構造整合性を高める新しいメモリ効率GANアーキテクチャであるCRF-GANを紹介する。
条件付きランダムフィールドを2段階生成プロセスに統合することで、高解像度の画質を維持しながら空間コヒーレンスを改善することができる。
このモデルの性能は、最先端階層型(HA)-GANモデルに対して評価される。
材料と方法: HA-GANモデルに対するCRF-GANの性能を評価する。
この2つのモデルの比較は、FIDとMDDの測定値を用いて定量的な評価を行い、また、12人の居住放射線学者による2つの代替的強制選択 (2AFC) テストにより、生成した画像のリアリズムを評価することによって定性的な評価を行った。
結果: CRF-GANは低FID, MMDスコアでHA-GANより優れ, 画像の忠実度は良好であった。
2AFC試験では,CRF-Ganで生成した画像がHA-GANで生成した画像よりも有意に優先された。
さらに、CRF-GANは9.34%のメモリ使用率を示し、最大14.6%の高速化を実現した。
考察: CRF-GANモデルは, メモリ効率が良く, 高速でありながら, 従来のモデルよりも低品質の高解像度な3次元医用画像を生成することに成功した。
主な目的は、計算コストを下げるだけでなく、より高解像度の3D画像を作成するために、解放されたリソースを再配置することであった。
さらに,従来の多くの研究と異なり,定性的,定量的な評価を組み合わせることで,モデルの性能に対するより包括的なフィードバックを得ることができた。
関連論文リスト
- Memory-Efficient 3D High-Resolution Medical Image Synthesis Using CRF-Guided GANs [47.873227167456136]
本稿では、条件付きランダムフィールド(CRF)を用いて依存関係をモデル化する、エンドツーエンドの新しいGANアーキテクチャを提案する。
私たちのアーキテクチャは、メモリ使用量が少なく、複雑さも少ないが、最先端のアーキテクチャよりも優れています。
論文 参考訳(メタデータ) (2025-03-13T21:31:15Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Non-Reference Quality Assessment for Medical Imaging: Application to Synthetic Brain MRIs [0.0]
本研究では,3次元ResNetをトレーニングすることで脳MRI品質を評価するための,ディープラーニングに基づく新しい非参照手法を提案する。
このネットワークは、MRIスキャンでよく見られる6つの異なるアーティファクトで品質を推定するように設計されている。
その結果、歪みを正確に推定し、複数の視点から画質を反映する性能が向上した。
論文 参考訳(メタデータ) (2024-07-20T22:05:30Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
ニュージーランドの臨床試験において,PCCT画像の半減量と2倍の速度で再現する深層学習に基づくアプローチを提案する。
本稿では,GPUメモリの制限を緩和するパッチベースのボリュームリファインメントネットワーク,合成データを用いたトレーニングネットワーク,およびモデルベースの反復リファインメントを用いて,合成データと実世界のギャップを埋める。
論文 参考訳(メタデータ) (2024-03-19T00:07:48Z) - When No-Reference Image Quality Models Meet MAP Estimation in Diffusion Latents [92.45867913876691]
非参照画像品質評価(NR-IQA)モデルは、知覚された画像品質を効果的に定量化することができる。
NR-IQAモデルは、画像強調のための最大後部推定(MAP)フレームワークにプラグイン可能であることを示す。
論文 参考訳(メタデータ) (2024-03-11T03:35:41Z) - SdCT-GAN: Reconstructing CT from Biplanar X-Rays with Self-driven
Generative Adversarial Networks [6.624839896733912]
本稿では,3次元CT画像の再構成のための自己駆動型生成対向ネットワークモデル(SdCT-GAN)を提案する。
識別器に新しいオートエンコーダ構造を導入することにより、画像の詳細により多くの注意を払っている。
LPIPS評価基準は,既存画像よりも微細な輪郭やテクスチャを定量的に評価できる。
論文 参考訳(メタデータ) (2023-09-10T08:16:02Z) - SG-GAN: Fine Stereoscopic-Aware Generation for 3D Brain Point Cloud Up-sampling from a Single Image [15.698577360754877]
高密度脳点雲を生成するために,SG-GANと呼ばれる新しいモデルを提案する。
このモデルは、視覚的品質、客観的測定、および分類における性能の点で優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T02:42:12Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
肺がんは、長年にわたり、世界中でがん関連の死因の1つとなっている。
ディープラーニング、学習アルゴリズムに基づくコンピュータ支援診断(CAD)モデルは、スクリーニングプロセスを加速することができる。
しかし、堅牢で正確なモデルを開発するには、しばしば高品質なアノテーションを備えた大規模で多様な医療データセットが必要である。
論文 参考訳(メタデータ) (2023-05-02T01:04:22Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Robust deep learning for eye fundus images: Bridging real and synthetic data for enhancing generalization [0.8599177028761124]
この研究は、合成眼底画像を生成するために10の異なるGANアーキテクチャをAMDなしで比較する。
StyleGAN2は最も低いFrechet Inception Distance(166.17)に達し、臨床医は実際の画像と合成画像とを正確に区別できなかった。
精度はテストセットで82.8%、STAREデータセットで81.3%であり、モデルの一般化可能性を示している。
論文 参考訳(メタデータ) (2022-03-25T18:42:20Z) - Multi-Scale Convolutional Neural Network for Automated AMD
Classification using Retinal OCT Images [1.299941371793082]
加齢関連黄斑変性症(AMD)は、先進国、特に60歳以上の人々において、視覚障害の最も一般的な原因である。
近年のディープラーニングの発展は、完全に自動化された診断フレームワークの開発にユニークな機会を与えている。
様々な大きさの受容場を用いて病理を識別できる多スケール畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2021-10-06T18:20:58Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。