論文の概要: Diffusion Generative Modeling for Spatially Resolved Gene Expression Inference from Histology Images
- arxiv url: http://arxiv.org/abs/2501.15598v1
- Date: Sun, 26 Jan 2025 16:52:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 14:00:25.927050
- Title: Diffusion Generative Modeling for Spatially Resolved Gene Expression Inference from Histology Images
- Title(参考訳): 組織像からの空間分解遺伝子発現推定のための拡散生成モデル
- Authors: Sichen Zhu, Yuchen Zhu, Molei Tao, Peng Qiu,
- Abstract要約: 我々は、拡散を伴う遺伝子 $textbfE$xpression の推論で、$textbfS$pa$textbfT$ially を提示する。
$textbfStem$は、同じ遺伝子変異レベルを基底真理データとして共有する高忠実な遺伝子発現予測を生成する。
提案したパイプラインは、ゲノムの観点から、既存の、容易にアクセス可能なH&E染色組織像を解析する可能性を開放する。
- 参考スコア(独自算出の注目度): 11.64540208294516
- License:
- Abstract: Spatial Transcriptomics (ST) allows a high-resolution measurement of RNA sequence abundance by systematically connecting cell morphology depicted in Hematoxylin and Eosin (H&E) stained histology images to spatially resolved gene expressions. ST is a time-consuming, expensive yet powerful experimental technique that provides new opportunities to understand cancer mechanisms at a fine-grained molecular level, which is critical for uncovering new approaches for disease diagnosis and treatments. Here, we present $\textbf{Stem}$ ($\textbf{S}$pa$\textbf{T}$ially resolved gene $\textbf{E}$xpression inference with diffusion $\textbf{M}$odel), a novel computational tool that leverages a conditional diffusion generative model to enable in silico gene expression inference from H&E stained images. Through better capturing the inherent stochasticity and heterogeneity in ST data, $\textbf{Stem}$ achieves state-of-the-art performance on spatial gene expression prediction and generates biologically meaningful gene profiles for new H&E stained images at test time. We evaluate the proposed algorithm on datasets with various tissue sources and sequencing platforms, where it demonstrates clear improvement over existing approaches. $\textbf{Stem}$ generates high-fidelity gene expression predictions that share similar gene variation levels as ground truth data, suggesting that our method preserves the underlying biological heterogeneity. Our proposed pipeline opens up the possibility of analyzing existing, easily accessible H&E stained histology images from a genomics point of view without physically performing gene expression profiling and empowers potential biological discovery from H&E stained histology images.
- Abstract(参考訳): 空間転写学(ST)は、ヘマトキシリンとエオシン(H&E)染色組織像で描かれた細胞形態を、空間的に解決された遺伝子発現に体系的に結合することにより、RNA配列の高分解能の測定を可能にする。
STは時間を要するが高価で強力な実験技術であり、がんのメカニズムを微細な分子レベルで理解する新たな機会を提供する。
ここでは、条件付き拡散生成モデルを利用して、H&E染色画像からのシリコ遺伝子の発現推論を可能にする、新しい計算ツールである、拡散を伴う遺伝子$\textbf{E}$xpression inferenceを提示する。
STデータの固有確率性と不均一性をよりよく把握することで、$\textbf{Stem}$は空間的遺伝子発現予測における最先端のパフォーマンスを達成し、テスト時に新しいH&E染色画像に対して生物学的に意味のある遺伝子プロファイルを生成する。
提案アルゴリズムは組織ソースやシークエンシングプラットフォームを用いたデータセット上で評価され,既存のアプローチよりも明確な改善が示されている。
$\textbf{Stem}$は、基底真理データと類似した遺伝子変異レベルを共有する高忠実な遺伝子発現予測を生成する。
提案するパイプラインは,遺伝子プロファイリングを行うことなく,既存のH&E染色組織像をゲノム学的視点から解析し,H&E染色組織像から生物学的発見の可能性を高めることができる。
関連論文リスト
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
本研究では,98k塩基対 (bp) と1.2Bパラメータからなるゲノム基盤モデルを提案する。
このモデルは分子生物学の中心的なドグマに固執し、タンパク質のコード配列を正確に生成する。
また、特にプロモーター配列の即応的な生成を通じて、シーケンス最適化において大きな可能性を示している。
論文 参考訳(メタデータ) (2025-02-11T05:39:49Z) - MERGE: Multi-faceted Hierarchical Graph-based GNN for Gene Expression Prediction from Whole Slide Histopathology Images [6.717786190771243]
MERGE(Multifaceted hiErarchical gRaph for Gene Expressions)を導入し、階層グラフ構築戦略とグラフニューラルネットワーク(GNN)を組み合わせて、スライド画像全体の遺伝子発現予測を改善する。
組織像パッチを空間的特徴と形態的特徴の両方に基づいてクラスタリングすることにより,GNN学習における遠隔組織間の相互作用を促進する。
さらに,STデータ中のアーティファクトを緩和するために必要な異なるデータ平滑化技術の評価を行った。
論文 参考訳(メタデータ) (2024-12-03T17:32:05Z) - Multimodal contrastive learning for spatial gene expression prediction using histology images [13.47034080678041]
空間的トランスクリプトミクス表現予測のための Transformer と Densenet-121 エンコーダを用いたマルチモーダルコントラスト学習である textbfmclSTExp を提案する。
textbfmclSTExpは空間的遺伝子発現を予測するのに優れた性能を持つ。
がん特異的な過剰発現遺伝子を解釈し、免疫関連遺伝子を解明し、病理学者によって注釈された特別な空間領域を特定することには、有望であることが示されている。
論文 参考訳(メタデータ) (2024-07-11T06:33:38Z) - Spatially Resolved Gene Expression Prediction from Histology via Multi-view Graph Contrastive Learning with HSIC-bottleneck Regularization [18.554968935341236]
本稿では,HSIC-bottleneck Regularization (ST-GCHB) を用いたマルチビューグラフ比較学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-18T03:07:25Z) - Gene-Level Representation Learning via Interventional Style Transfer in Optical Pooled Screening [3.7038542578642715]
光プールスクリーニング(OPS)を用いて得られた遺伝的摂動細胞の画像から、遺伝子レベルの特徴表現を学習するためのスタイル変換アプローチを採用する。
本手法は,遺伝子機能に応じた遺伝子表現のクラスタリングにおける工学的特徴よりも優れ,潜伏する生物学的関係を明らかにするために有用であることを示す。
論文 参考訳(メタデータ) (2024-06-11T22:56:50Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Spatially Resolved Gene Expression Prediction from H&E Histology Images
via Bi-modal Contrastive Learning [4.067498002241427]
BLEEP(Bi-modaL Embedding for Expression Prediction)は、空間的に解決された遺伝子発現プロファイルを生成することができるバイモーダル埋め込みフレームワークである。
BLEEPはコントラスト学習を用いて、顕微鏡解像度でペア画像と表現プロファイルを用いて参照データセットから低次元の関節埋め込み空間を構築する。
10x Visiumプラットフォームを用いて取得したヒト肝組織データセットを用いて,BLEEPによる遺伝子発現予測の有効性を示す。
論文 参考訳(メタデータ) (2023-06-02T18:27:26Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。