論文の概要: Quantum-Enhanced Attention Mechanism in NLP: A Hybrid Classical-Quantum Approach
- arxiv url: http://arxiv.org/abs/2501.15630v2
- Date: Fri, 27 Jun 2025 14:09:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-30 15:06:57.54832
- Title: Quantum-Enhanced Attention Mechanism in NLP: A Hybrid Classical-Quantum Approach
- Title(参考訳): NLPにおける量子増強アテンション機構--ハイブリッド古典量子アプローチ
- Authors: S. M. Yousuf Iqbal Tomal, Abdullah Al Shafin, Debojit Bhattacharjee, MD. Khairul Amin, Rafiad Sadat Shahir,
- Abstract要約: 本稿では,量子化されたアテンション機構を標準の古典的アーキテクチャに組み込んだ,古典量子変換器のハイブリッドモデルを提案する。
様々なNLPベンチマークにおいて,このアプローチの有効性を実証し,効率と表現能力の両面で改善したことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in quantum computing have opened new pathways for enhancing deep learning architectures, particularly in domains characterized by high-dimensional and context-rich data such as natural language processing (NLP). In this work, we present a hybrid classical-quantum Transformer model that integrates a quantum-enhanced attention mechanism into the standard classical architecture. By embedding token representations into a quantum Hilbert space via parameterized variational circuits and exploiting entanglement-aware kernel similarities, the model captures complex semantic relationships beyond the reach of conventional dot-product attention. We demonstrate the effectiveness of this approach across diverse NLP benchmarks, showing improvements in both efficiency and representational capacity. The results section reveal that the quantum attention layer yields globally coherent attention maps and more separable latent features, while requiring comparatively fewer parameters than classical counterparts. These findings highlight the potential of quantum-classical hybrid models to serve as a powerful and resource-efficient alternative to existing attention mechanisms in NLP.
- Abstract(参考訳): 量子コンピューティングの最近の進歩は、特に自然言語処理(NLP)のような高次元で文脈に富んだデータによって特徴づけられる領域において、ディープラーニングアーキテクチャを強化する新しい経路を開拓している。
本研究では,量子化アテンション機構を標準古典アーキテクチャに組み込んだ,古典量子変換器のハイブリッドモデルを提案する。
トークン表現をパラメータ化された変分回路を介して量子ヒルベルト空間に埋め込み、絡み合いを意識したカーネルの類似性を利用することにより、このモデルは従来のドット積の注意の範囲を超えた複雑な意味的関係を捉える。
様々なNLPベンチマークにおいて,このアプローチの有効性を実証し,効率と表現能力の両面で改善したことを示す。
結果のセクションでは、量子アテンション層がグローバルにコヒーレントなアテンションマップとより分離可能なラテント特徴をもたらし、古典的なアテンションよりも比較的少ないパラメータを必要とすることが明らかとなった。
これらの知見は、NLPの既存の注意機構に代わる強力で資源効率の良い代替品として機能する量子古典ハイブリッドモデルの可能性を浮き彫りにしている。
関連論文リスト
- Quantum Adaptive Excitation Network with Variational Quantum Circuits for Channel Attention [0.2812395851874055]
量子適応励起ネットワーク(QAE-Net)について紹介する。
QAE-Netは、畳み込みニューラルネットワーク(CNN)におけるチャネルアテンションメカニズムを強化するために設計されたハイブリッド量子古典フレームワークである。
論文 参考訳(メタデータ) (2025-07-15T11:40:37Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Quantum Adaptive Self-Attention for Quantum Transformer Models [0.0]
本稿では,量子アテンション機構を備えた古典的トランスフォーマーモデルを強化するハイブリッドアーキテクチャであるQuantum Adaptive Self-Attention (QASA)を提案する。
QASAはドット積の注意をパラメータ化量子回路(PQC)に置き換え、量子ヒルベルト空間におけるトークン間の関係を適応的に捉える。
合成時系列タスクの実験により、QASAは標準変圧器と古典的変圧器の双方と比較して、より高速な収束と優れた一般化を実現することが示された。
論文 参考訳(メタデータ) (2025-04-05T02:52:37Z) - A Survey of Quantum Transformers: Approaches, Advantages, Challenges, and Future Directions [2.5871385953824855]
量子トランスモデル(Quantum Transformer Model)は、量子機械学習(QML)における重要な研究方向を表す。
PQCベースのTransformerモデルは、現在の研究の主要な焦点である。
量子線形代数(QLA)ベースのトランスフォーマーモデルは、将来のフォールトトレラント量子コンピューティングに依存している。
論文 参考訳(メタデータ) (2025-04-04T05:40:18Z) - Characterizing Non-Markovian Dynamics of Open Quantum Systems [0.0]
我々はTCLマスター方程式を用いて非マルコフ進化を特徴付ける構造保存手法を開発した。
本稿では,ローレンス・リバモア国立研究所のQuantum Device Integration Testbed (QuDIT) における超伝導量子ビットの実験データを用いた手法について述べる。
これらの知見は、短期量子プロセッサにおける量子制御とエラー軽減に寄与する、オープン量子システムの効率的なモデリング戦略に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-03-28T04:43:24Z) - Quantum autoencoders for image classification [0.0]
量子オートエンコーダ(QAE)は、パラメータチューニングのみに古典的な最適化を利用する。
QAEはより少ないパラメータで効率的な分類モデルとして機能し、完全なエンドツーエンド学習に量子回路を利用する可能性を強調することができる。
論文 参考訳(メタデータ) (2025-02-21T07:13:38Z) - Quantum Latent Diffusion Models [65.16624577812436]
本稿では,古典的潜伏拡散モデルの確立した考え方を活用する量子拡散モデルの潜在的バージョンを提案する。
これには、従来のオートエンコーダを使用してイメージを削減し、次に潜時空間の変動回路で操作する。
この結果は、量子バージョンが生成した画像のより良い測定値を得ることによって証明されたように、量子バージョンを使用することの利点を示している。
論文 参考訳(メタデータ) (2025-01-19T21:24:02Z) - Programming Variational Quantum Circuits with Quantum-Train Agent [3.360429911727189]
可変量子回路(VQC)の効率的かつスケーラブルなプログラミングを容易にするQT-QFWP(Quantum-Train Quantum Fast Weight Programmer)フレームワークを提案する。
このアプローチは、量子と古典の両方のパラメータ管理を最適化することで、従来のハイブリッド量子古典モデルに対して大きな優位性をもたらす。
QT-QFWPは、関連モデルを効率性と予測精度の両方で上回り、より実用的で費用対効果の高い量子機械学習アプリケーションへの道筋を提供する。
論文 参考訳(メタデータ) (2024-12-02T06:26:09Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
本稿では,自然言語処理タスクのためのQMSAN(Quantum Mixed-State Self-Attention Network)を提案する。
QMSANは混合状態に基づく量子アテンション機構を使用し、量子領域内のクエリとキー間の直接的な類似度推定を可能にする。
また、回路内の固定量子ゲートを介して実装された革新的な量子位置符号化方式を提案し、追加の量子ビットリソースを使わずにシーケンス情報をキャプチャする能力を向上させる。
論文 参考訳(メタデータ) (2024-03-05T11:29:05Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum Advantage Actor-Critic for Reinforcement Learning [5.579028648465784]
本稿では,Advantage Actor-Criticアルゴリズムと変分量子回路を組み合わせた新しい量子強化学習手法を提案する。
複数の量子アドバンテージ・アクター・クリティカル構成をよく知られたカートポール環境で実証的にテストし、連続的な状態空間を持つ制御タスクにおける我々のアプローチを評価する。
論文 参考訳(メタデータ) (2024-01-13T11:08:45Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
GAN(Generative Adversarial Networks)領域における古典的および量子コンピューティングパラダイムの相乗的融合について検討する。
我々の目的は、量子計算要素を従来のGANアーキテクチャにシームレスに統合し、トレーニングプロセスの強化のために新しい経路を開放することである。
この研究は量子化機械学習の最前線に位置し、量子システムの計算能力を活用するための重要な一歩である。
論文 参考訳(メタデータ) (2023-12-15T16:51:36Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
本研究は,変分量子回路に基づく垂直連合学習アーキテクチャを提案し,テキスト分類のための量子化事前学習BERTモデルの競争性能を実証する。
目的分類実験により,提案したBERT-QTCモデルにより,SnipsおよびATIS音声言語データセットの競合実験結果が得られた。
論文 参考訳(メタデータ) (2022-02-17T09:55:21Z) - Error mitigation in variational quantum eigensolvers using tailored
probabilistic machine learning [5.630204194930539]
本稿では,量子計算におけるノイズを軽減するために,ガウス過程回帰(GPR)をアクティブラーニングフレームワーク内に導入する新しい手法を提案する。
我々は,IBMのオープンソース量子コンピューティングフレームワークであるQiskitを用いて,2サイトアンダーソン不純物モデルと8サイトハイゼンベルクモデルに対する提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2021-11-16T22:29:43Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。