A Machine Learning Approach to Automatic Fall Detection of Soldiers
- URL: http://arxiv.org/abs/2501.15655v2
- Date: Fri, 31 Jan 2025 13:12:36 GMT
- Title: A Machine Learning Approach to Automatic Fall Detection of Soldiers
- Authors: Leandro Soares, Gustavo Venturini, José Gomes, Jonathan Efigenio, Pablo Rangel, Pedro Gonzalez, Joel dos Santos, Diego Brandão, Eduardo Bezerra,
- Abstract summary: This article presents research conducted under the scope of the Brazilian Navy's Soldier of the Future'' project.
It focuses on the development of a Casualty Detection System to identify injuries that could incapacitate a soldier and lead to severe blood loss.
The data were used to train 1D Convolutional Neural Networks (CNN1D) with the objective of accurately classifying falls that could result from life-threatening injuries.
- Score: 0.8182812460605992
- License:
- Abstract: Military personnel and security agents often face significant physical risks during conflict and engagement situations, particularly in urban operations. Ensuring the rapid and accurate communication of incidents involving injuries is crucial for the timely execution of rescue operations. This article presents research conducted under the scope of the Brazilian Navy's ``Soldier of the Future'' project, focusing on the development of a Casualty Detection System to identify injuries that could incapacitate a soldier and lead to severe blood loss. The study specifically addresses the detection of soldier falls, which may indicate critical injuries such as hypovolemic hemorrhagic shock. To generate the publicly available dataset, we used smartwatches and smartphones as wearable devices to collect inertial data from soldiers during various activities, including simulated falls. The data were used to train 1D Convolutional Neural Networks (CNN1D) with the objective of accurately classifying falls that could result from life-threatening injuries. We explored different sensor placements (on the wrists and near the center of mass) and various approaches to using inertial variables, including linear and angular accelerations. The neural network models were optimized using Bayesian techniques to enhance their performance. The best-performing model and its results, discussed in this article, contribute to the advancement of automated systems for monitoring soldier safety and improving response times in engagement scenarios.
Related papers
- Psych-Occlusion: Using Visual Psychophysics for Aerial Detection of Occluded Persons during Search and Rescue [41.03292974500013]
Small Unmanned Aerial Systems (sUAS) as "eyes in the sky" during Emergency Response (ER) scenarios.
efficient detection of persons from aerial views plays a crucial role in achieving a successful mission outcome.
Performance of Computer Vision (CV) models onboard sUAS substantially degrades under real-life rigorous conditions.
We exemplify the use of our behavioral dataset, Psych-ER, by using its human accuracy data to adapt the loss function of a detection model.
arXiv Detail & Related papers (2024-12-07T06:22:42Z) - Bed-Attached Vibration Sensor System: A Machine Learning Approach for Fall Detection in Nursing Homes [33.45861095003339]
This study presents the development of an automated fall detection system integrated into care beds, aimed at enhancing patient safety without compromising privacy through wearables or video monitoring.
Mechanical vibrations transmitted through the bed frame are processed using a short-time Fourier transform, enabling robust classification of distinct human fall patterns with a convolutional neural network.
Despite limited available data, the proposed system shows the potential for an accurate and rapid response to falls, mitigating health implications, and addressing the needs of an aging population.
arXiv Detail & Related papers (2024-12-06T11:08:47Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
This study proposes a model for generating synthetic data of multi-stage cyber attacks in the power grid.
It uses attack trees to model the attacker's sequence of steps and a game-theoretic approach to incorporate the defender's actions.
arXiv Detail & Related papers (2023-12-21T09:54:18Z) - Deep Learning-based Fall Detection Algorithm Using Ensemble Model of
Coarse-fine CNN and GRU Networks [7.624051346741515]
An ensemble model that combines a coarse-fine convolutional neural network and gated recurrent unit is proposed in this study.
The proposed model achieves a recall, precision, and F-score of 92.54%, 96.13%, and 94.26%, respectively.
arXiv Detail & Related papers (2023-04-13T08:30:46Z) - Adversarial training with informed data selection [53.19381941131439]
Adrial training is the most efficient solution to defend the network against these malicious attacks.
This work proposes a data selection strategy to be applied in the mini-batch training.
The simulation results show that a good compromise can be obtained regarding robustness and standard accuracy.
arXiv Detail & Related papers (2023-01-07T12:09:50Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
We propose a novel learning framework, RobustSense, to defend common adversarial attacks.
Our method works well on wireless human activity recognition and person identification systems.
arXiv Detail & Related papers (2022-04-04T15:06:03Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Adversarial Training is Not Ready for Robot Learning [55.493354071227174]
Adversarial training is an effective method to train deep learning models that are resilient to norm-bounded perturbations.
We show theoretically and experimentally that neural controllers obtained via adversarial training are subjected to three types of defects.
Our results suggest that adversarial training is not yet ready for robot learning.
arXiv Detail & Related papers (2021-03-15T07:51:31Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.