Random Walk Guided Hyperbolic Graph Distillation
- URL: http://arxiv.org/abs/2501.15696v1
- Date: Sun, 26 Jan 2025 22:55:34 GMT
- Title: Random Walk Guided Hyperbolic Graph Distillation
- Authors: Yunbo Long, Liming Xu, Stefan Schoepf, Alexandra Brintrup,
- Abstract summary: This paper presents the Hyperbolic Graph Distillation with Random Walks Optimization (HyDRO)
HyDRO is a novel graph distillation approach that leverages hyperbolic embeddings to capture complex geometric patterns and optimize the spectral gap in hyperbolic space.
Experiments show that HyDRO demonstrates strong task generalization, consistently outperforming state-of-the-art methods in both node classification and link prediction tasks.
- Score: 46.5100809575555
- License:
- Abstract: Graph distillation (GD) is an effective approach to extract useful information from large-scale network structures. However, existing methods, which operate in Euclidean space to generate condensed graphs, struggle to capture the inherent tree-like geometry of real-world networks, resulting in distilled graphs with limited task-specific information for downstream tasks. Furthermore, these methods often fail to extract dynamic properties from graphs, which are crucial for understanding information flow and facilitating graph continual learning. This paper presents the Hyperbolic Graph Distillation with Random Walks Optimization (HyDRO), a novel graph distillation approach that leverages hyperbolic embeddings to capture complex geometric patterns and optimize the spectral gap in hyperbolic space. Experiments show that HyDRO demonstrates strong task generalization, consistently outperforming state-of-the-art methods in both node classification and link prediction tasks. HyDRO also effectively preserves graph random walk properties, producing condensed graphs that achieve enhanced performance in continual graph learning. Additionally, HyDRO achieves competitive results on mainstream graph distillation benchmarks, while maintaining a strong balance between privacy and utility, and exhibiting robust resistance to noises.
Related papers
- Random Walk Diffusion for Efficient Large-Scale Graph Generation [0.43108040967674194]
We propose ARROW-Diff (AutoRegressive RandOm Walk Diffusion), a novel random walk-based diffusion approach for efficient large-scale graph generation.
We demonstrate that ARROW-Diff can scale to large graphs efficiently, surpassing other baseline methods in terms of both generation time and multiple graph statistics.
arXiv Detail & Related papers (2024-08-08T13:42:18Z) - RobGC: Towards Robust Graph Condensation [61.259453496191696]
Graph neural networks (GNNs) have attracted widespread attention for their impressive capability of graph representation learning.
However, the increasing prevalence of large-scale graphs presents a significant challenge for GNN training due to their computational demands.
We propose graph condensation (GC) to generate an informative compact graph that enables efficient training of GNNs while retaining performance.
arXiv Detail & Related papers (2024-06-19T04:14:57Z) - Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
We propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification.
To better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies.
Based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges.
arXiv Detail & Related papers (2024-05-08T02:44:13Z) - Simple Graph Condensation [30.85754566420301]
Graph condensation involves tuning Graph Neural Networks (GNNs) on a small condensed graph for use on a large-scale original graph.
We introduce the Simple Graph Condensation (SimGC) framework, which aligns the condensed graph with the original graph from the input layer to the prediction layer.
SimGC achieves a significant speedup of up to 10 times compared to existing graph condensation methods.
arXiv Detail & Related papers (2024-03-22T05:04:48Z) - Neural Graph Generator: Feature-Conditioned Graph Generation using Latent Diffusion Models [22.794561387716502]
We introduce the Neural Graph Generator (NGG), a novel approach which utilizes conditioned latent diffusion models for graph generation.
NGG demonstrates a remarkable capacity to model complex graph patterns, offering control over the graph generation process.
arXiv Detail & Related papers (2024-03-03T15:28:47Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Hierarchical Adaptive Pooling by Capturing High-order Dependency for
Graph Representation Learning [18.423192209359158]
Graph neural networks (GNN) have been proven to be mature enough for handling graph-structured data on node-level graph representation learning tasks.
This paper proposes a hierarchical graph-level representation learning framework, which is adaptively sensitive to graph structures.
arXiv Detail & Related papers (2021-04-13T06:22:24Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
We propose an end-to-end framework that learns an implicit model of graph structure formation and discovers an underlying optimization mechanism.
The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain.
GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm.
arXiv Detail & Related papers (2020-07-07T16:51:39Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.