論文の概要: The Components of Collaborative Joint Perception and Prediction -- A Conceptual Framework
- arxiv url: http://arxiv.org/abs/2501.15860v1
- Date: Mon, 27 Jan 2025 08:36:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:56:16.348929
- Title: The Components of Collaborative Joint Perception and Prediction -- A Conceptual Framework
- Title(参考訳): 協調的共同認識と予測の構成要素-概念的枠組み
- Authors: Lei Wan, Hannan Ejaz Keen, Alexey Vinel,
- Abstract要約: 車両間通信(V2X)によるコネクテッド・オートモービル(CAV)の利点により、センサデータの交換による協調知覚(CP)の実現が可能となる。
本稿では,コラボレーティブ・ジョイント・パーセプション・アンド・予測(Co-P&P)という新たなタスクを導入し,その実装のための概念的枠組みを提供する。
- 参考スコア(独自算出の注目度): 0.9012198585960441
- License:
- Abstract: Connected Autonomous Vehicles (CAVs) benefit from Vehicle-to-Everything (V2X) communication, which enables the exchange of sensor data to achieve Collaborative Perception (CP). To reduce cumulative errors in perception modules and mitigate the visual occlusion, this paper introduces a new task, Collaborative Joint Perception and Prediction (Co-P&P), and provides a conceptual framework for its implementation to improve motion prediction of surrounding objects, thereby enhancing vehicle awareness in complex traffic scenarios. The framework consists of two decoupled core modules, Collaborative Scene Completion (CSC) and Joint Perception and Prediction (P&P) module, which simplify practical deployment and enhance scalability. Additionally, we outline the challenges in Co-P&P and discuss future directions for this research area.
- Abstract(参考訳): 接続された自律走行車(CAV)はV2X通信の恩恵を受け、センサデータの交換により協調知覚(CP)を実現する。
本稿では,認識モジュールの累積誤差を低減し,視覚的閉塞を軽減するために,コラボレーティブ・ジョイント・パーセプション・アンド・予測(Co-P&P)という新たなタスクを導入し,その実装のための概念的枠組みを提供し,周囲の物体の動き予測を改善し,複雑な交通シナリオにおける車両の認識を高める。
このフレームワークは2つの分離されたコアモジュール、Collaborative Scene Completion(CSC)とJoint Perception and Prediction(P&P)モジュールで構成される。
さらに,Co-P&Pの課題について概説し,今後の研究分野の方向性について論じる。
関連論文リスト
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - CMP: Cooperative Motion Prediction with Multi-Agent Communication [21.60646440715162]
本稿では,協調動作予測の実現可能性と有効性について検討する。
提案手法であるCMPは,LiDAR信号をモデル入力とし,追跡と予測能力を向上させる。
特に、CMPは平均予測誤差を16.4%削減し、検出精度は低下している。
論文 参考訳(メタデータ) (2024-03-26T17:53:27Z) - V2X-PC: Vehicle-to-everything Collaborative Perception via Point Cluster [58.79477191603844]
我々は,低レベル構造情報と高レベル意味情報を組み合わせて,シーンを疎結合に表現する新しいメッセージユニット,すなわちポイントクラスタを導入する。
このフレームワークには、オブジェクトの機能を維持し、帯域幅を管理するためのポイントクラスタパッキング(PCP)モジュールが含まれている。
2つの広く認識されている協調認識ベンチマークの実験は、従来の最先端の手法と比較して、我々の手法の優れた性能を示している。
論文 参考訳(メタデータ) (2024-03-25T11:24:02Z) - MACP: Efficient Model Adaptation for Cooperative Perception [23.308578463976804]
協調機能を備えた単エージェント事前学習モデルを備えたMACPという新しいフレームワークを提案する。
提案手法は,協調観測を効果的に活用し,他の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-10-25T14:24:42Z) - DCP-Net: A Distributed Collaborative Perception Network for Remote
Sensing Semantic Segmentation [12.745202593789152]
本稿では,分散協調認識ネットワークであるDCP-Netを革新的に紹介する。
DCP-Netは、メンバーが他のプラットフォームの機能を統合することで知覚性能を向上させるのに役立つ。
その結果、DCP-Netは既存の手法を網羅的に上回っていることがわかった。
論文 参考訳(メタデータ) (2023-09-05T13:36:40Z) - Interruption-Aware Cooperative Perception for V2X Communication-Aided
Autonomous Driving [49.42873226593071]
本稿では,V2X通信支援自律運転のためのV2X通信入出力対応協調知覚(V2X-INCOP)を提案する。
我々は、過去の協力情報を用いて、割り込みによる行方不明情報を復元し、割り込み問題の影響を軽減する。
3つの公的な協調認識データセットの実験から,コミュニケーション中断が協調知覚に与える影響を緩和するために提案手法が有効であることが示された。
論文 参考訳(メタデータ) (2023-04-24T04:59:13Z) - CoPEM: Cooperative Perception Error Models for Autonomous Driving [20.60246432605745]
我々は、隠蔽対象の誤検知エラーとして現れる自律走行車(AV)の(車載)知覚に焦点を当てる。
本稿では,仮想テスト環境におけるV2Xソリューションの効果的な統合を実現するために,協調知覚誤りモデル(coPEM)の概念を導入する。
論文 参考訳(メタデータ) (2022-11-21T04:40:27Z) - Collaborative Perception for Autonomous Driving: Current Status and
Future Trend [33.6716877086539]
車両が情報を共有することで、視線や視野を超えた環境を知覚できるコラボレーティブな認識が提案されている。
本稿では,コラボレーティブモードを一般化し,コラボレーティブ認知の重要な要素と応用を要約する,基本的な概念を紹介する。
論文 参考訳(メタデータ) (2022-08-22T14:51:29Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。