論文の概要: Optimizing Sentence Embedding with Pseudo-Labeling and Model Ensembles: A Hierarchical Framework for Enhanced NLP Tasks
- arxiv url: http://arxiv.org/abs/2501.15876v1
- Date: Mon, 27 Jan 2025 09:02:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:59:36.294987
- Title: Optimizing Sentence Embedding with Pseudo-Labeling and Model Ensembles: A Hierarchical Framework for Enhanced NLP Tasks
- Title(参考訳): Pseudo-LabelingとModel Ensemblesによる文埋め込みの最適化:強化NLPタスクのための階層的フレームワーク
- Authors: Ziwei Liu, Qi Zhang, Lifu Gao,
- Abstract要約: 本稿では,擬似ラベル生成とモデルアンサンブル技術を組み合わせて文の埋め込みを改善する枠組みを提案する。
トレーニングデータの一貫性を確保するために、SimpleWiki、Wikipedia、BookCorpusの外部データを使用します。
実験の結果,基本モデルと比較して精度とF1スコアが大幅に向上した。
- 参考スコア(独自算出の注目度): 40.704014941800594
- License:
- Abstract: Sentence embedding tasks are important in natural language processing (NLP), but improving their performance while keeping them reliable is still hard. This paper presents a framework that combines pseudo-label generation and model ensemble techniques to improve sentence embeddings. We use external data from SimpleWiki, Wikipedia, and BookCorpus to make sure the training data is consistent. The framework includes a hierarchical model with an encoding layer, refinement layer, and ensemble prediction layer, using ALBERT-xxlarge, RoBERTa-large, and DeBERTa-large models. Cross-attention layers combine external context, and data augmentation techniques like synonym replacement and back-translation increase data variety. Experimental results show large improvements in accuracy and F1-score compared to basic models, and studies confirm that cross-attention and data augmentation make a difference. This work presents an effective way to improve sentence embedding tasks and lays the groundwork for future NLP research.
- Abstract(参考訳): 文の埋め込みタスクは自然言語処理(NLP)において重要であるが、信頼性を維持しながらパフォーマンスを向上させることは依然として難しい。
本稿では,擬似ラベル生成とモデルアンサンブル技術を組み合わせて文の埋め込みを改善する枠組みを提案する。
トレーニングデータの一貫性を確保するために、SimpleWiki、Wikipedia、BookCorpusの外部データを使用します。
このフレームワークは、ALBERT-xxlarge、RoBERTa-large、DeBERTa-largeモデルを使用して、符号化層、精製層、アンサンブル予測層を備えた階層モデルを含む。
クロスアテンションレイヤは、外部コンテキストと、同義語置換やバックトランスレーションのようなデータ拡張技術を組み合わせることで、データの多様性を増大させる。
実験の結果,基本モデルと比較して精度とF1スコアが大幅に向上し,クロスアテンションとデータ拡張が相違があることが確認された。
本研究は,文の埋め込み作業を改善する効果的な方法を示し,今後のNLP研究の基盤となる。
関連論文リスト
- NeKo: Toward Post Recognition Generative Correction Large Language Models with Task-Oriented Experts [57.53692236201343]
提案するマルチタスク補正MOEでは,専門家が音声・テキスト・言語・テキスト・視覚・テキスト・データセットの「専門家」になるよう訓練する。
NeKoはマルチタスクモデルとして文法とポストOCR補正を競合的に実行している。
論文 参考訳(メタデータ) (2024-11-08T20:11:24Z) - Enhancing Text Generation in Joint NLG/NLU Learning Through Curriculum Learning, Semi-Supervised Training, and Advanced Optimization Techniques [0.0]
本研究では,NLG(Natural Language Generation)とNLU(Natural Language Understanding)の併用によってテキスト生成を改善する手法を開発した。
データは、クリーニング、トークン化、ストーミング、ストップワード削除など、注釈付きデータセットの収集と前処理によって作成される。
トランスフォーマーベースのエンコーダとデコーダ、長距離依存関係のキャプチャ、ソースターゲットシーケンスモデリングの改善。
政策勾配手法による強化学習、半教師付きトレーニング、注意機構の改善、および異なる近似を用いて、モデルを微調整し、複雑な言語タスクを効果的に処理する。
論文 参考訳(メタデータ) (2024-10-17T12:43:49Z) - Unleashing the Power of LLMs as Multi-Modal Encoders for Text and Graph-Structured Data [42.18348019901044]
グラフ構造化情報は、言語モデルを強化するためのリッチなコンテキスト情報を提供する。
グラフとテキストの埋め込みを統合する既存の方法は、これらのモダリティの不均一性を完全に活用する能力に制限されている。
我々は,大規模言語モデル(LLM)を利用してテキストとグラフデータを共同符号化するフレームワークであるJanusを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:40:20Z) - Synergizing Unsupervised and Supervised Learning: A Hybrid Approach for Accurate Natural Language Task Modeling [0.0]
本稿では,NLPタスクモデリングの精度を向上させるために,教師なし学習と教師なし学習を相乗化する新しいハイブリッド手法を提案する。
提案手法は,未ラベルコーパスから表現を学習する教師なしモジュールと,これらの表現を活用してタスク固有モデルを強化する教師付きモジュールを統合する。
手法の相乗化により、我々のハイブリッドアプローチはベンチマークデータセット上でSOTAの結果を達成し、よりデータ効率が高くロバストなNLPシステムを実現する。
論文 参考訳(メタデータ) (2024-06-03T08:31:35Z) - FRACTAL: Fine-Grained Scoring from Aggregate Text Labels [17.052047103156372]
大規模言語モデル(LLM)は、書き込み、ファクト検索、クエリ、推論といった複雑な生成タスクをパワーアップするように調整されている。
伝統的に、LLM性能の評価とチューニングのための人間またはモデルフィードバックが応答レベルで提供されてきた。
最近の研究は、文レベルのラベルがLLM最適化のためのより正確で解釈可能なフィードバックを提供する可能性を示唆している。
論文 参考訳(メタデータ) (2024-04-07T05:54:28Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
記述的なテキストクエリーを与えられたテキストベースの人物検索は、画像ギャラリーからベストマッチした人物を検索することを目的としている。
このようなクロスモーダル検索タスクは、重要なモダリティギャップ、きめ細かい相違、注釈付きデータの不十分さのため、かなり難しい。
本稿では,テキストに基づく人物検索のための2つのトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-11-15T16:26:49Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
本稿では、2つの側面の要約モデルを改善するための原則的推論フレームワークを提案する。
我々のフレームワークは、トップレベルが長距離依存性をキャプチャするドキュメントの階層的な潜在構造を前提としています。
本稿では,様々な要約データセットに対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-03-15T01:24:51Z) - ALP: Data Augmentation using Lexicalized PCFGs for Few-Shot Text
Classification [11.742065170002162]
Lexicalized Probabilistic context-free grammars (ALP) を用いたデータ拡張について述べる。
数ショットのテキスト分類タスクの実験は、ALPが多くの最先端の分類方法を強化することを示した。
我々は、従来のトレーニングと検証セットの分割は、我々の新しい拡張ベースの分割戦略と比較して、準最適であると実証的に主張する。
論文 参考訳(メタデータ) (2021-12-16T09:56:35Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。