論文の概要: Boli: A dataset for understanding stuttering experience and analyzing stuttered speech
- arxiv url: http://arxiv.org/abs/2501.15877v2
- Date: Wed, 05 Feb 2025 11:18:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:24:35.214576
- Title: Boli: A dataset for understanding stuttering experience and analyzing stuttered speech
- Title(参考訳): Boli: 発声経験の理解と発声の分析のためのデータセット
- Authors: Ashita Batra, Mannas narang, Neeraj Kumar Sharma, Pradip K Das,
- Abstract要約: 本稿では,科学的理解と技術開発の促進を目的とした多言語音声データセットであるProject Boliを紹介する。
このデータセットは(a)匿名メタデータ(性別、年齢、国、母国、母国語)と、彼らの日常生活にどのような影響を及ぼすかという質問に対する回答で構成されている。
本稿では,データ収集手順,乱れを経験する人々の要約,イベントの重大度評価,収集したデータの技術的検証など,データセットの包括的分析について述べる。
- 参考スコア(独自算出の注目度): 4.27217352442499
- License:
- Abstract: There is a growing need for diverse, high-quality stuttered speech data, particularly in the context of Indian languages. This paper introduces Project Boli, a multi-lingual stuttered speech dataset designed to advance scientific understanding and technology development for individuals who stutter, particularly in India. The dataset constitutes (a) anonymized metadata (gender, age, country, mother tongue) and responses to a questionnaire about how stuttering affects their daily lives, (b) captures both read speech (using the Rainbow Passage) and spontaneous speech (through image description tasks) for each participant and (c) includes detailed annotations of five stutter types: blocks, prolongations, interjections, sound repetitions and word repetitions. We present a comprehensive analysis of the dataset, including the data collection procedure, experience summarization of people who stutter, severity assessment of stuttering events and technical validation of the collected data. The dataset is released as an open access to further speech technology development.
- Abstract(参考訳): 特にインドの言語では、多種多様な高品質の音声データの必要性が高まっている。
本稿では,特にインドで散らばった個人に対する科学的理解と技術開発を促進するために設計された多言語音声データセットであるProject Boliを紹介する。
データセットを構成する
(a)匿名メタデータ(性別,年齢,国,母国,母国語)と,発話が日常生活に与える影響に関する質問に対する回答。
(b) 各参加者の読み上げ音声(レインボー・パッセージ)と自発的音声(画像記述タスク)の両方をキャプチャし,
(c) ブロック、延長、インタージェクション、音の繰り返し、単語の繰り返しの5種類のスタブー型の詳細な注釈を含む。
本稿では,データ収集手順,発散した人々の経験要約,発散した出来事の重大度評価,収集したデータの技術的検証など,データセットの包括的分析について述べる。
データセットは、さらなる音声技術開発へのオープンアクセスとしてリリースされている。
関連論文リスト
- Scaling Speech-Text Pre-training with Synthetic Interleaved Data [31.77653849518526]
音声言語モデル(SpeechLM)は音声入力を受け入れ、音声出力を生成し、より自然な人間とコンピュータの相互作用を可能にする。
従来のSpeechLMの開発手法は、教師なし音声データとパラレル音声テキストデータの可用性の制限によって制約されている。
本稿では,テキストコーパスから得られた大規模合成インターリーブデータを活用することによって,音声テキスト事前学習のスケールアップを行う手法を提案する。
論文 参考訳(メタデータ) (2024-11-26T17:19:09Z) - Self-supervised Speech Models for Word-Level Stuttered Speech Detection [66.46810024006712]
自己教師付き音声モデルを利用した単語レベルの発声音声検出モデルを提案する。
本評価は, 単語レベルの発声検出において, 従来の手法を超越していることを示す。
論文 参考訳(メタデータ) (2024-09-16T20:18:20Z) - SpeechCraft: A Fine-grained Expressive Speech Dataset with Natural Language Description [19.064845530513285]
本稿では,表現的かつ鮮明な人間の言語記述で単語中の音声クリップに注釈を付ける,解釈のための自動音声アノテーションシステムを提案する。
本システムでは,自然言語記述の調整による音声スタイルの深い理解を提供する。
約2000時間の音声データを含み、200万以上の音声クリップを含む、高度に記述的な自然言語スタイルのプロンプトによって区別されている。
論文 参考訳(メタデータ) (2024-08-24T15:36:08Z) - DisfluencySpeech -- Single-Speaker Conversational Speech Dataset with Paralanguage [7.096838107088313]
DisfluencySpeechは、パラ言語でラベル付けされた英語の音声データセットである。
Switchboard-1 電話音声コーパス(Switchboard)から10時間近い表現的発話を再現する1つの話者
論文 参考訳(メタデータ) (2024-06-13T05:23:22Z) - EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation [83.29199726650899]
EARSデータセットは、さまざまなバックグラウンドから107人の話者で構成され、100時間のクリーンで無響な音声データである。
データセットには、感情的なスピーチ、異なる読み方、非言語音、会話の自由なスピーチなど、幅広い種類の話し方が含まれている。
提案手法は,データセット上での音声強調とデバーベレーションのための様々な手法をベンチマークし,その性能を測定値を用いて評価する。
論文 参考訳(メタデータ) (2024-06-10T11:28:29Z) - SER_AMPEL: a multi-source dataset for speech emotion recognition of
Italian older adults [58.49386651361823]
SER_AMPELは、音声感情認識のためのマルチソースデータセットである。
イタリア人の高齢者の場合、音声による感情認識の基準を提供する目的で収集される。
このようなデータセットの必要性の証拠は、技術の現状の分析から生まれる。
論文 参考訳(メタデータ) (2023-11-24T13:47:25Z) - The Conversational Short-phrase Speaker Diarization (CSSD) Task:
Dataset, Evaluation Metric and Baselines [63.86406909879314]
本稿では,会話短文話者ダイアリゼーション(CSSD)タスクについて述べる。
トレーニングとテストのデータセット、評価基準、ベースラインで構成されている。
距離の面では,発話レベルでのSD精度を算出する新しい対話型DER (CDER) 評価指標を設計する。
論文 参考訳(メタデータ) (2022-08-17T03:26:23Z) - Automated Audio Captioning: an Overview of Recent Progress and New
Challenges [56.98522404673527]
自動音声キャプションは、与えられた音声クリップの自然言語記述を生成することを目的とした、モーダル横断翻訳タスクである。
本稿では、既存の様々なアプローチから評価指標やデータセットまで、自動音声キャプションにおけるコントリビューションの総合的なレビューを行う。
論文 参考訳(メタデータ) (2022-05-12T08:36:35Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
本稿では,ピアツーピアのHindi会話データセットであるVyaktitvを提案する。
参加者の高品質な音声とビデオの録音と、会話ごとにヒングリッシュのテキストによる書き起こしで構成されている。
データセットには、収入、文化的指向など、すべての参加者のための豊富な社会デコグラフィー的特徴が含まれています。
論文 参考訳(メタデータ) (2020-08-31T17:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。