論文の概要: SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
- arxiv url: http://arxiv.org/abs/2501.15941v1
- Date: Mon, 27 Jan 2025 10:36:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:59:25.704106
- Title: SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
- Title(参考訳): SAPPHIRE: より高速な大規模統計的学習のための事前条件付き確率変数削減
- Authors: Jingruo Sun, Zachary Frangella, Madeleine Udell,
- Abstract要約: Ill-conditioned objectives and nonsmooth regularizers under the performance of traditional convex method。
本研究では,不条件な複合型大規模機械学習問題に対する分散自由解を提案する。
- 参考スコア(独自算出の注目度): 18.055120576191204
- License:
- Abstract: Regularized empirical risk minimization (rERM) has become important in data-intensive fields such as genomics and advertising, with stochastic gradient methods typically used to solve the largest problems. However, ill-conditioned objectives and non-smooth regularizers undermine the performance of traditional stochastic gradient methods, leading to slow convergence and significant computational costs. To address these challenges, we propose the $\texttt{SAPPHIRE}$ ($\textbf{S}$ketching-based $\textbf{A}$pproximations for $\textbf{P}$roximal $\textbf{P}$reconditioning and $\textbf{H}$essian $\textbf{I}$nexactness with Variance-$\textbf{RE}$educed Gradients) algorithm, which integrates sketch-based preconditioning to tackle ill-conditioning and uses a scaled proximal mapping to minimize the non-smooth regularizer. This stochastic variance-reduced algorithm achieves condition-number-free linear convergence to the optimum, delivering an efficient and scalable solution for ill-conditioned composite large-scale convex machine learning problems. Extensive experiments on lasso and logistic regression demonstrate that $\texttt{SAPPHIRE}$ often converges $20$ times faster than other common choices such as $\texttt{Catalyst}$, $\texttt{SAGA}$, and $\texttt{SVRG}$. This advantage persists even when the objective is non-convex or the preconditioner is infrequently updated, highlighting its robust and practical effectiveness.
- Abstract(参考訳): 正規化経験的リスク最小化(rERM)はゲノミクスや広告といったデータ集約的な分野において重要であり、確率勾配法は最も大きな問題を解決するために一般的に用いられている。
しかし、不調和な目的や非滑らかな正規化器は従来の確率勾配法の性能を損なうため、収束が遅く、計算コストも大幅に低下する。
これらの課題に対処するために、$\textbf{SAPPHIRE}$$$\textbf{S}$ketching-based $\textbf{A}$pproximations for $\textbf{P}$roximal $\textbf{P}$reconditioning and $\textbf{H}$essian $\textbf{I}$nexactness with Variance-$\textbf{RE}$educed Gradients)アルゴリズムを提案する。
この確率分散還元アルゴリズムは、条件数のない線形収束を最適に達成し、不条件の複合大規模凸機械学習問題に対する効率的でスケーラブルなソリューションを提供する。
ラッソおよびロジスティック回帰に関する大規模な実験では、$\texttt{SAPPHIRE}$は、$\texttt{Catalyst}$、$\texttt{SAGA}$、$\texttt{SVRG}$などの一般的な選択よりも20ドル早く収束することが示されている。
この利点は、目的が凸でないときやプレコンディショナーが頻繁に更新されても持続し、その堅牢で実用的な効果を強調している。
関連論文リスト
- Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency [52.60557300927007]
離散部分モジュラー問題を連続的に最適化するために,$textbfMA-OSMA$アルゴリズムを提案する。
また、一様分布を混合することによりKLの発散を効果的に活用する、プロジェクションフリーな$textbfMA-OSEA$アルゴリズムも導入する。
我々のアルゴリズムは最先端OSGアルゴリズムによって提供される$(frac11+c)$-approximationを大幅に改善する。
論文 参考訳(メタデータ) (2025-02-07T15:57:56Z) - Stochastic Constrained Decentralized Optimization for Machine Learning with Fewer Data Oracles: a Gradient Sliding Approach [32.36073823372713]
機械学習モデルでは、アルゴリズムはその勾配のためにデータセンターとサンプルデータに通信する必要がある。
これにより、通信効率が良く、勾配計算の数を最小限に抑える分散最適化アルゴリズムの必要性が生じる。
通信効率が高く,$varepsilon$-approximate のソリューションを実現する。
論文 参考訳(メタデータ) (2024-04-03T06:55:59Z) - Globally Convergent Accelerated Algorithms for Multilinear Sparse
Logistic Regression with $\ell_0$-constraints [2.323238724742687]
多重線形ロジスティック回帰は多次元データ解析の強力なツールである。
本稿では,$ell_0$-MLSRを解くために,アクセラレーションされた近位置換最小値MLSRモデルを提案する。
また、APALM$+$が一階臨界点に大域収束し、クルディ・ロジャシエヴィチ性質を用いて収束を確立することも示している。
論文 参考訳(メタデータ) (2023-09-17T11:05:08Z) - PROMISE: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates [17.777466668123886]
PROMISE ($textbfPr$econditioned $textbfO$ptimization $textbfM$ethods by $textbfI$ncorporating $textbfS$calable Curvature $textbfE$stimates)はスケッチベースの事前条件勾配アルゴリズムである。
PROMISEには、SVRG、SAGA、およびKatyushaのプレコンディション版が含まれている。
論文 参考訳(メタデータ) (2023-09-05T07:49:10Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - SketchySGD: Reliable Stochastic Optimization via Randomized Curvature
Estimates [19.420605210427635]
SketchySGDは、サブサンプルヘッセンに対するランダム化低ランク近似を用いることで、機械学習の既存の勾配法を改善する。
固定段数を持つSketchySGDが最適の周りの小さな球に線形に収束することを理論的に示す。
条件のない設定では、最小二乗問題に対してSketchySGDはSGDよりも高速に収束することを示す。
論文 参考訳(メタデータ) (2022-11-16T01:05:41Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
滑らかな凸凹凸結合型サドル点問題, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$ を考える。
漸進的勾配指数(AG-EG)降下指数アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-06-17T06:10:20Z) - Sharper Rates and Flexible Framework for Nonconvex SGD with Client and
Data Sampling [64.31011847952006]
我々は、平均$n$スムーズでおそらくは非カラー関数のほぼ定常点を求める問題を再考する。
我々は$smallsfcolorgreen$を一般化し、事実上あらゆるサンプリングメカニズムで確実に動作するようにします。
我々は、スムーズな非カラー状態における最適境界の最も一般的な、最も正確な解析を提供する。
論文 参考訳(メタデータ) (2022-06-05T21:32:33Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
敵対的レジリエントな分散最適化。
機械は独立して勾配を計算し 協力することができます
私達のアルゴリズムは新しい集中の技術およびサンプル複雑性に基づいています。
それは非常に実用的です:それはないときすべての前の方法の性能を改善します。
セッティングマシンがあります。
論文 参考訳(メタデータ) (2020-12-28T17:19:32Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
本研究は,ステップサイズの減衰が正確な収束に必要であるという事実と,一定のステップサイズがエラーまでの時間でより速く学習するという事実のバランスをとることを目的とする。
ステップサイズのミニバッチを最初から修正するのではなく,パラメータを適応的に進化させることを提案する。
論文 参考訳(メタデータ) (2020-07-02T16:02:02Z) - Stochastic Proximal Gradient Algorithm with Minibatches. Application to
Large Scale Learning Models [2.384873896423002]
非滑らかな成分を持つ汎用合成対象関数に対する勾配アルゴリズムのミニバッチ変種を開発し解析する。
我々は、最小バッチサイズ$N$に対して、$mathcalO(frac1Nepsilon)$$epsilon-$subityが最適解に期待される二次距離で達成されるような、定数および変数のステップサイズ反復ポリシーの複雑さを提供する。
論文 参考訳(メタデータ) (2020-03-30T10:43:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。