MatCLIP: Light- and Shape-Insensitive Assignment of PBR Material Models
- URL: http://arxiv.org/abs/2501.15981v1
- Date: Mon, 27 Jan 2025 12:08:52 GMT
- Title: MatCLIP: Light- and Shape-Insensitive Assignment of PBR Material Models
- Authors: Michael Birsak, John Femiani, Biao Zhang, Peter Wonka,
- Abstract summary: MatCLIP is a novel method that extracts shape- and lighting-insensitive descriptors of PBR materials to assign plausible textures to 3D objects based on images.
By extending an Alpha-CLIP-based model on material renderings across diverse shapes and lighting, our approach generates descriptors that bridge the domains of PBR representations with photographs or renderings.
MatCLIP achieves a top-1 classification accuracy of 76.6%, outperforming state-of-the-art methods such as PhotoShape and MatAtlas.
- Score: 42.42328559042189
- License:
- Abstract: Assigning realistic materials to 3D models remains a significant challenge in computer graphics. We propose MatCLIP, a novel method that extracts shape- and lighting-insensitive descriptors of Physically Based Rendering (PBR) materials to assign plausible textures to 3D objects based on images, such as the output of Latent Diffusion Models (LDMs) or photographs. Matching PBR materials to static images is challenging because the PBR representation captures the dynamic appearance of materials under varying viewing angles, shapes, and lighting conditions. By extending an Alpha-CLIP-based model on material renderings across diverse shapes and lighting, and encoding multiple viewing conditions for PBR materials, our approach generates descriptors that bridge the domains of PBR representations with photographs or renderings, including LDM outputs. This enables consistent material assignments without requiring explicit knowledge of material relationships between different parts of an object. MatCLIP achieves a top-1 classification accuracy of 76.6%, outperforming state-of-the-art methods such as PhotoShape and MatAtlas by over 15 percentage points on publicly available datasets. Our method can be used to construct material assignments for 3D shape datasets such as ShapeNet, 3DCoMPaT++, and Objaverse. All code and data will be released.
Related papers
- IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations [64.07859467542664]
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics.
Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs.
We introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations.
arXiv Detail & Related papers (2024-12-16T18:52:56Z) - Boosting 3D Object Generation through PBR Materials [32.732511476490316]
We propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials.
For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values.
In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment.
arXiv Detail & Related papers (2024-11-25T04:20:52Z) - OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction [54.706361479680055]
We introduce the OpenMaterial dataset, comprising 1001 objects made of 295 distinct materials.
OpenMaterial provides comprehensive annotations, including 3D shape, material type, camera pose, depth, and object mask.
It stands as the first large-scale dataset enabling quantitative evaluations of existing algorithms on objects with diverse and challenging materials.
arXiv Detail & Related papers (2024-06-13T07:46:17Z) - MaPa: Text-driven Photorealistic Material Painting for 3D Shapes [80.66880375862628]
This paper aims to generate materials for 3D meshes from text descriptions.
Unlike existing methods that synthesize texture maps, we propose to generate segment-wise procedural material graphs.
Our framework supports high-quality rendering and provides substantial flexibility in editing.
arXiv Detail & Related papers (2024-04-26T17:54:38Z) - MaterialSeg3D: Segmenting Dense Materials from 2D Priors for 3D Assets [63.284244910964475]
We propose a 3D asset material generation framework to infer underlying material from the 2D semantic prior.
Based on such a prior model, we devise a mechanism to parse material in 3D space.
arXiv Detail & Related papers (2024-04-22T07:00:17Z) - IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination [37.96484120807323]
This paper aims to recover object materials from posed images captured under an unknown static lighting condition.
We learn the material prior with a generative model for regularizing the optimization process.
Experiments on real-world and synthetic datasets demonstrate that our approach achieves state-of-the-art performance on material recovery.
arXiv Detail & Related papers (2024-04-17T17:45:08Z) - Generating Parametric BRDFs from Natural Language Descriptions [1.1847636087764204]
We develop a model to generate Bidirectional Reflectance Distribution Functions from descriptive prompts.
BRDFs are four dimensional probability distributions that characterize the interaction of light with surface materials.
Our model is first trained using a semi-supervised approach before being tuned via an unsupervised scheme.
arXiv Detail & Related papers (2023-06-19T15:35:19Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.