Improving Tropical Cyclone Forecasting With Video Diffusion Models
- URL: http://arxiv.org/abs/2501.16003v1
- Date: Mon, 27 Jan 2025 12:42:20 GMT
- Title: Improving Tropical Cyclone Forecasting With Video Diffusion Models
- Authors: Zhibo Ren, Pritthijit Nath, Pancham Shukla,
- Abstract summary: Tropical cyclone (TC) forecasting is crucial for disaster preparedness and mitigation.
We present a novel application of video diffusion models for TC forecasting that explicitly models temporal dependencies through additional temporal layers.
Our approach enables the model to generate multiple frames simultaneously, better capturing cyclone evolution patterns.
- Score: 0.0
- License:
- Abstract: Tropical cyclone (TC) forecasting is crucial for disaster preparedness and mitigation. While recent deep learning approaches have shown promise, existing methods often treat TC evolution as a series of independent frame-to-frame predictions, limiting their ability to capture long-term dynamics. We present a novel application of video diffusion models for TC forecasting that explicitly models temporal dependencies through additional temporal layers. Our approach enables the model to generate multiple frames simultaneously, better capturing cyclone evolution patterns. We introduce a two-stage training strategy that significantly improves individual-frame quality and performance in low-data regimes. Experimental results show our method outperforms the previous approach of Nath et al. by 19.3% in MAE, 16.2% in PSNR, and 36.1% in SSIM. Most notably, we extend the reliable forecasting horizon from 36 to 50 hours. Through comprehensive evaluation using both traditional metrics and Fr\'echet Video Distance (FVD), we demonstrate that our approach produces more temporally coherent forecasts while maintaining competitive single-frame quality. Code accessible at https://github.com/Ren-creater/forecast-video-diffmodels.
Related papers
- Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Forecasting Tropical Cyclones with Cascaded Diffusion Models [4.272401529389713]
This work leverages generative diffusion models to forecast cyclone trajectories and precipitation patterns.
Forecasts can be produced in as little as 30 mins on a single Nvidia A30/RTX 2080 Ti.
arXiv Detail & Related papers (2023-10-02T23:09:59Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
Vaccine supply chain optimization can benefit from hierarchical time series forecasting.
Forecasts of different hierarchy levels become incoherent when higher levels do not match the sum of the lower levels forecasts.
We tackle the vaccine sale forecasting problem by modeling sales data from GSK between 2010 and 2021 as a hierarchical time series.
arXiv Detail & Related papers (2023-05-02T14:34:34Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - Ensemble Modeling for Time Series Forecasting: an Adaptive Robust
Optimization Approach [3.7565501074323224]
This paper proposes a new methodology for building robust ensembles of time series forecasting models.
We demonstrate the effectiveness of our method through a series of synthetic experiments and real-world applications.
arXiv Detail & Related papers (2023-04-09T20:30:10Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
We show how to bridge the gap between sets of separate forecasts from NWP models and the 'ideal' forecast for decision support.
We use Quantile Regression Forests to learn the error profile of each numerical model, and use these to apply empirically-derived probability distributions to forecasts.
Second, we combine these probabilistic forecasts using quantile averaging. Third, we interpolate between the aggregate quantiles in order to generate a full predictive distribution.
arXiv Detail & Related papers (2020-05-06T16:46:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.