論文の概要: Options-Aware Dense Retrieval for Multiple-Choice query Answering
- arxiv url: http://arxiv.org/abs/2501.16111v1
- Date: Mon, 27 Jan 2025 15:03:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:53:45.609506
- Title: Options-Aware Dense Retrieval for Multiple-Choice query Answering
- Title(参考訳): 複数問合せ問合せ解答のためのオプション対応Dense Retrieval
- Authors: Manish Singh, Manish Shrivastava,
- Abstract要約: 長文複数選択質問応答タスクは、広範囲なテキストソースに対して頑健な推論を必要とする。
この領域における先行研究は、主に事前訓練された高密度検索モデルを利用している。
本稿では,これらの課題に対処するため,OADR (Options Aware Dense Retrieval) と呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 5.098112872671412
- License:
- Abstract: Long-context multiple-choice question answering tasks require robust reasoning over extensive text sources. Since most of the pre-trained transformer models are restricted to processing only a few hundred words at a time, successful completion of such tasks often relies on the identification of evidence spans, such as sentences, that provide supporting evidence for selecting the correct answer. Prior research in this domain has predominantly utilized pre-trained dense retrieval models, given the absence of supervision to fine-tune the retrieval process. This paper proposes a novel method called Options Aware Dense Retrieval (OADR) to address these challenges. ORDA uses an innovative approach to fine-tuning retrieval by leveraging query-options embeddings, which aim to mimic the embeddings of the oracle query (i.e., the query paired with the correct answer) for enhanced identification of supporting evidence. Through experiments conducted on the QuALITY benchmark dataset, we demonstrate that our proposed model surpasses existing baselines in terms of performance and accuracy.
- Abstract(参考訳): 長文複数選択質問応答タスクは、広範囲なテキストソースに対して頑健な推論を必要とする。
事前訓練されたトランスフォーマーモデルのほとんどは、一度に数百語しか処理できないため、そのようなタスクの完了は、正しい答えを選択するための証拠を提供する文章のような証拠の特定に依存することが多い。
この領域における先行研究は、検索プロセスの微調整の監督が欠如していることから、事前訓練された高密度検索モデルを主に利用してきた。
本稿では,これらの課題に対処するため,OADR (Options Aware Dense Retrieval) と呼ばれる新しい手法を提案する。
ORDAは、クエリオプションの埋め込みを活用することで、検索の微調整に革新的なアプローチを採用している。
QuALITYベンチマークデータセットで実施した実験により,提案モデルが既存のベースラインを超える性能と精度を実証した。
関連論文リスト
- Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach [6.549143816134531]
二重機能要約器を備えたReSPと呼ばれる新しい反復RAG法を提案する。
マルチホップ質問応答HotpotQAと2WikiMultihopQAの実験結果から,本手法が最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-07-18T02:19:00Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
オンラインバッチ選択として知られる一般的な研究ラインでは、トレーニングプロセス中の情報サブセットの選択について検討している。
バニラ参照モデルフリーメソッドは、独立してデータをサンプリング的にスコア付けし、選択する。
DivBS(Diversified Batch Selection)を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:12:20Z) - Multimodal Prompt Retrieval for Generative Visual Question Answering [9.973591610073006]
本稿では、検索したプロンプトとマルチモーダル機能を統合して、自由テキストで回答を生成するマルチモーダルプロンプト検索(MPR)によって強化された新しい生成モデルを提案する。
医療用VQAタスクの実験では、MPRはドメイン適応の設定において、最大30%の精度で検索不能なタスクを上回ります。
論文 参考訳(メタデータ) (2023-06-30T14:06:13Z) - Socratic Pretraining: Question-Driven Pretraining for Controllable
Summarization [89.04537372465612]
ソクラティック事前訓練は、要約タスクにおける制御性を改善するために設計された、質問駆動で教師なし事前訓練の目的である。
以上の結果から,Socraticプレトレーニングはタスク固有のラベル付きデータ要件を半分に削減することがわかった。
論文 参考訳(メタデータ) (2022-12-20T17:27:10Z) - AugTriever: Unsupervised Dense Retrieval and Domain Adaptation by Scalable Data Augmentation [44.93777271276723]
擬似クエリドキュメントペアを作成することにより,アノテーションフリーでスケーラブルなトレーニングを可能にする2つのアプローチを提案する。
クエリ抽出方法は、元のドキュメントから有能なスパンを選択して擬似クエリを生成する。
転送クエリ生成方法は、要約などの他のNLPタスクのために訓練された生成モデルを使用して、擬似クエリを生成する。
論文 参考訳(メタデータ) (2022-12-17T10:43:25Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
本稿では,ジェネレーション方式で証拠を検索する最初のシステムであるGEREを提案する。
FEVERデータセットの実験結果は、GEREが最先端のベースラインよりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2022-04-12T03:49:35Z) - Double Retrieval and Ranking for Accurate Question Answering [120.69820139008138]
本研究では,トランスフォーマーを用いた解答選択モデルに導入された解答検証ステップが,問合せ解答における解答の精度を大幅に向上させることを示す。
AS2のためのよく知られた3つのデータセットの結果は、最先端の一貫性と大幅な改善を示している。
論文 参考訳(メタデータ) (2022-01-16T06:20:07Z) - Adaptive Information Seeking for Open-Domain Question Answering [61.39330982757494]
本稿では,オープンドメイン質問応答,すなわちAISOに対する適応型情報探索手法を提案する。
学習方針によると、AISOは適切な検索行動を選択し、各ステップで行方不明の証拠を探すことができる。
AISOは、検索と回答の評価の両方の観点から、事前定義された戦略で全てのベースライン手法を上回ります。
論文 参考訳(メタデータ) (2021-09-14T15:08:13Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
本稿では,双方向トランスフォーマに基づくニューラルクエリ解決モデルQuReTeCを提案する。
我々はQuReTeCが最先端モデルより優れており、また、QuReTeCのトレーニングに必要な人為的なデータ量を大幅に削減するために、我々の遠隔監視手法が有効であることを示す。
論文 参考訳(メタデータ) (2020-05-24T11:37:22Z) - Unsupervised Alignment-based Iterative Evidence Retrieval for Multi-hop
Question Answering [40.58976291178477]
本稿では,単純で高速かつ教師なしの反復的証拠検索手法を提案する。
その単純さにもかかわらず,提案手法はエビデンス選択タスクにおいて,従来の手法よりも優れていた。
これらのエビデンス文をRoBERTaの回答分類コンポーネントに入力すると、最先端のQA性能が得られる。
論文 参考訳(メタデータ) (2020-05-04T00:19:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。