Efficient evaluation of real-time path integrals
- URL: http://arxiv.org/abs/2501.16323v1
- Date: Mon, 27 Jan 2025 18:57:04 GMT
- Title: Efficient evaluation of real-time path integrals
- Authors: Job Feldbrugge, Joshua Y. L. Jones,
- Abstract summary: We propose an efficient method for the numerical evaluation of the real-time world-line path integral for theories where the potential is dominated by a quadratic at infinity.
Our method directly applies to problems in quantum mechanics, the word-line quantization of quantum field theory, and quantum gravity.
- Score: 0.0
- License:
- Abstract: The Feynman path integral has revolutionized modern approaches to quantum physics. Although the path integral formalism has proven very successful and spawned several approximation schemes, the direct evaluation of real-time path integrals is still extremely expensive and numerically delicate due to its high-dimensional and oscillatory nature. We propose an efficient method for the numerical evaluation of the real-time world-line path integral for theories where the potential is dominated by a quadratic at infinity. This is done by rewriting the high-dimensional oscillatory integral in terms of a series of low-dimensional oscillatory integrals, that we efficiently evaluate with Picard-Lefschetz theory or approximate with the eikonal approximation. Subsequently, these integrals are stitched together with a series of fast Fourier transformations to recover the lattice regularized Feynman path integral. Our method directly applies to problems in quantum mechanics, the word-line quantization of quantum field theory, and quantum gravity.
Related papers
- Loop Feynman integration on a quantum computer [0.0]
We numerically evaluate for the first time loop Feynman integrals in a near-term quantum computer and a quantum simulator.
QFIAE introduces a Quantum Neural Network (QNN) that efficiently decomposes the multidimensional integrand into its Fourier series.
arXiv Detail & Related papers (2024-01-05T19:00:04Z) - On the Path Integral Formulation of Wigner-Dunkl Quantum Mechanics [0.0]
Feynman's path integral approach is studied in the framework of the Wigner-Dunkl deformation of quantum mechanics.
We look at the Euclidean time evolution and the related Dunkl process.
arXiv Detail & Related papers (2023-12-20T10:23:34Z) - Fourier-Flow model generating Feynman paths [21.67472055005712]
Feynman path integrals generalize the classical action principle to a probabilistic perspective.
The underlying difficulty is to tackle the whole path manifold from finite samples.
Modern generative models in machine learning can handle learning and representing probability distribution.
arXiv Detail & Related papers (2022-11-07T11:31:40Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits [63.83649593474856]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Estimating the Euclidean Quantum Propagator with Deep Generative
Modelling of Feynman paths [0.0]
We propose the concept of Feynman path generator, which efficiently generates Feynman paths with fixed endpoints from a (low-dimensional) latent space.
Our work leads to a fresh approach for calculating the quantum propagator, paves the way toward generative modelling of Feynman paths, and may also provide a future new perspective to understand the quantum-classical correspondence through deep learning.
arXiv Detail & Related papers (2022-02-06T10:27:15Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - On the numerical evaluation of real-time path integrals: Double
exponential integration and the Maslov correction [0.0]
Gauss-Fresnel integrals are obtained numerically with high precision but modest number of function calls.
Maslov correction for the harmonic oscillator is evaluated numerically.
Prospects of evaluating scattering amplitudes of finite-range potentials by direct numerical evaluation of a real-time path integral are discussed.
arXiv Detail & Related papers (2021-05-06T10:41:21Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.