論文の概要: Tailored Forecasting from Short Time Series via Meta-learning
- arxiv url: http://arxiv.org/abs/2501.16325v1
- Date: Mon, 27 Jan 2025 18:58:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:53:48.183316
- Title: Tailored Forecasting from Short Time Series via Meta-learning
- Title(参考訳): メタラーニングによる時系列からの事前予測
- Authors: Declan A. Norton, Edward Ott, Andrew Pomerance, Brian Hunt, Michelle Girvan,
- Abstract要約: 関連時間系列(METAFORS)からのタイラート予測のためのメタラーニングについて紹介する。
関連するシステムでトレーニングされたモデルのライブラリを活用することで、METAFORSは限られたデータでシステムの進化を予測するために、カスタマイズされたモデルを構築する。
MeTAFORSの短期動態と長期統計の両方を予測する能力を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning (ML) models can be effective for forecasting the dynamics of unknown systems from time-series data, but they often require large amounts of data and struggle to generalize across systems with varying dynamics. Combined, these issues make forecasting from short time series particularly challenging. To address this problem, we introduce Meta-learning for Tailored Forecasting from Related Time Series (METAFORS), which uses related systems with longer time-series data to supplement limited data from the system of interest. By leveraging a library of models trained on related systems, METAFORS builds tailored models to forecast system evolution with limited data. Using a reservoir computing implementation and testing on simulated chaotic systems, we demonstrate METAFORS' ability to predict both short-term dynamics and long-term statistics, even when test and related systems exhibit significantly different behaviors and the available data are scarce, highlighting its robustness and versatility in data-limited scenarios.
- Abstract(参考訳): 機械学習(ML)モデルは、時系列データから未知のシステムのダイナミクスを予測するのに効果的であるが、しばしば大量のデータを必要とし、動的に変化するシステム全体の一般化に苦労する。
これらの問題が組み合わさって、短い時系列からの予測が特に困難になる。
この問題に対処するために,より長い時系列データを持つ関連システムを用いて,興味のあるシステムからの限られたデータを補う,MetaFORS(Meta-learning)を導入する。
関連するシステムでトレーニングされたモデルのライブラリを活用することで、METAFORSは限られたデータでシステムの進化を予測するために、カスタマイズされたモデルを構築する。
シミュレーションカオスシステム上での貯水池計算の実装とテストを用いて,データ制限シナリオの頑健さと汎用性を強調しながら,テストと関連システムが著しく異なる振る舞いを示す場合でも,短期力学と長期統計の両方を予測できるMETAFORSの能力を実証する。
関連論文リスト
- Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings [0.0]
パティオ時間予測は輸送、物流、サプライチェーン管理において重要である。
本稿では,従来の予測手法の強みと小言語モデルの命令チューニングを融合した動的マルチモーダル手法を提案する。
我々のフレームワークは、推論速度とデータプライバシ/セキュリティを維持しながら、計算とメモリの要求を低減したオンプレミスのカスタマイズを可能にする。
論文 参考訳(メタデータ) (2024-08-24T16:32:58Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をトレーニングデータセットを超える微細な時間スケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
また、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークも導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
本稿では,実世界のデータでしばしば発生する課題に対処するために,時系列計算と予測のための新しいモデリング手法を提案する。
本手法はシリーズの進化力学の連続時間依存モデルに依存する。
メタラーニングアルゴリズムによって駆動される変調機構は、観測されたタイムウインドウを超えて、見えないサンプルや外挿への適応を可能にする。
論文 参考訳(メタデータ) (2023-06-09T13:20:04Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
本研究では,実験プロセスから適切なモデル構造を自動的に抽出するデータ駆動型手法を提案する。
簡単なベンチマーク問題に対して,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-07T18:23:14Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Combining Machine Learning with Knowledge-Based Modeling for Scalable
Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal
Systems [48.7576911714538]
我々は、過去のデータを予測に組み込む上で、機械学習を必須のツールとして活用しようと試みる。
i)並列機械学習予測手法と(ii)ハイブリッド手法の2つの手法を組み合わせて,知識ベースコンポーネントと機械学習ベースコンポーネントからなる複合予測システムを提案する。
i) と (ii) を組み合わせることで、非常に大規模なシステムに優れた性能を与えることができるだけでなく、並列機械学習コンポーネントを訓練するのに必要となる時系列データの長さが、並列化なしで必要なものよりも劇的に少ないことを実証した。
論文 参考訳(メタデータ) (2020-02-10T23:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。