How Strategic Agents Respond: Comparing Analytical Models with LLM-Generated Responses in Strategic Classification
- URL: http://arxiv.org/abs/2501.16355v1
- Date: Mon, 20 Jan 2025 01:39:03 GMT
- Title: How Strategic Agents Respond: Comparing Analytical Models with LLM-Generated Responses in Strategic Classification
- Authors: Tian Xie, Pavan Rauch, Xueru Zhang,
- Abstract summary: We propose using strategic advice generated by large language models to simulate human agent responses in Strategic Classification.
We examine five critical SC scenarios -- hiring, loan applications, school admissions, personal income, and public assistance programs.
We then compare the resulting agent responses with the best responses generated by existing theoretical models.
- Score: 9.296248945826084
- License:
- Abstract: When machine learning (ML) algorithms are used to automate human-related decisions, human agents may gain knowledge of the decision policy and behave strategically to obtain desirable outcomes. Strategic Classification (SC) has been proposed to address the interplay between agents and decision-makers. Prior work on SC has relied on assumptions that agents are perfectly or approximately rational, responding to decision policies by maximizing their utilities. Verifying these assumptions is challenging due to the difficulty of collecting real-world agent responses. Meanwhile, the growing adoption of large language models (LLMs) makes it increasingly likely that human agents in SC settings will seek advice from these tools. We propose using strategic advice generated by LLMs to simulate human agent responses in SC. Specifically, we examine five critical SC scenarios -- hiring, loan applications, school admissions, personal income, and public assistance programs -- and simulate how human agents with diverse profiles seek advice from LLMs. We then compare the resulting agent responses with the best responses generated by existing theoretical models. Our findings reveal that: (i) LLMs and theoretical models generally lead to agent score or qualification changes in the same direction across most settings, with both achieving similar levels of fairness; (ii) state-of-the-art commercial LLMs (e.g., GPT-3.5, GPT-4) consistently provide helpful suggestions, though these suggestions typically do not result in maximal score or qualification improvements; and (iii) LLMs tend to produce more diverse agent responses, often favoring more balanced effort allocation strategies. These results suggest that theoretical models align with LLMs to some extent and that leveraging LLMs to simulate more realistic agent responses offers a promising approach to designing trustworthy ML systems.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - LLM-Powered Preference Elicitation in Combinatorial Assignment [17.367432304040662]
We study the potential of large language models (LLMs) as proxies for humans to simplify preference elicitation (PE) in assignment.
We propose a framework for LLM proxies that can work in tandem with SOTA ML-powered preference elicitation schemes.
We experimentally evaluate the efficiency of LLM proxies against human queries in the well-studied course allocation domain.
arXiv Detail & Related papers (2025-02-14T17:12:20Z) - Approximating Human Strategic Reasoning with LLM-Enhanced Recursive Reasoners Leveraging Multi-agent Hypergames [3.5083201638203154]
We implement a role-based multi-agent strategic interaction framework tailored to sophisticated reasoners.
We use one-shot, 2-player beauty contests to evaluate the reasoning capabilities of the latest LLMs.
Our experiments show that artificial reasoners can outperform the baseline model in terms of both approximating human behaviour and reaching the optimal solution.
arXiv Detail & Related papers (2025-02-11T10:37:20Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - On the limits of agency in agent-based models [13.130587222524305]
Agent-based modeling offers powerful insights into complex systems, but its practical utility has been limited by computational constraints.
Recent advancements in large language models (LLMs) could enhance ABMs with adaptive agents, but their integration into large-scale simulations remains challenging.
We present LLM archetypes, a technique that balances behavioral complexity with computational efficiency, allowing for nuanced agent behavior in large-scale simulations.
arXiv Detail & Related papers (2024-09-14T04:17:24Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
Large language models (LLMs) have opened up exciting possibilities for simulating human behavior and cognitive processes.
However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain.
This paper presents a novel approach based on Shapley values to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output.
arXiv Detail & Related papers (2024-03-29T22:49:43Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities.
When used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4.
arXiv Detail & Related papers (2024-03-29T03:48:12Z) - Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization [53.510942601223626]
Large Language Models (LLMs) exhibit robust problem-solving capabilities for diverse tasks.
These task solvers necessitate manually crafted prompts to inform task rules and regulate behaviors.
We propose Agent-Pro: an LLM-based Agent with Policy-level Reflection and Optimization.
arXiv Detail & Related papers (2024-02-27T15:09:20Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - STEER: Assessing the Economic Rationality of Large Language Models [21.91812661475551]
There is increasing interest in using LLMs as decision-making "agents"
determining whether an LLM agent is reliable enough to be trusted requires a methodology for assessing such an agent's economic rationality.
arXiv Detail & Related papers (2024-02-14T20:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.