Approximating Human Strategic Reasoning with LLM-Enhanced Recursive Reasoners Leveraging Multi-agent Hypergames
- URL: http://arxiv.org/abs/2502.07443v1
- Date: Tue, 11 Feb 2025 10:37:20 GMT
- Title: Approximating Human Strategic Reasoning with LLM-Enhanced Recursive Reasoners Leveraging Multi-agent Hypergames
- Authors: Vince Trencsenyi, Agnieszka Mensfelt, Kostas Stathis,
- Abstract summary: We implement a role-based multi-agent strategic interaction framework tailored to sophisticated reasoners.<n>We use one-shot, 2-player beauty contests to evaluate the reasoning capabilities of the latest LLMs.<n>Our experiments show that artificial reasoners can outperform the baseline model in terms of both approximating human behaviour and reaching the optimal solution.
- Score: 3.5083201638203154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM-driven multi-agent-based simulations have been gaining traction with applications in game-theoretic and social simulations. While most implementations seek to exploit or evaluate LLM-agentic reasoning, they often do so with a weak notion of agency and simplified architectures. We implement a role-based multi-agent strategic interaction framework tailored to sophisticated recursive reasoners, providing the means for systematic in-depth development and evaluation of strategic reasoning. Our game environment is governed by the umpire responsible for facilitating games, from matchmaking through move validation to environment management. Players incorporate state-of-the-art LLMs in their decision mechanism, relying on a formal hypergame-based model of hierarchical beliefs. We use one-shot, 2-player beauty contests to evaluate the recursive reasoning capabilities of the latest LLMs, providing a comparison to an established baseline model from economics and data from human experiments. Furthermore, we introduce the foundations of an alternative semantic measure of reasoning to the k-level theory. Our experiments show that artificial reasoners can outperform the baseline model in terms of both approximating human behaviour and reaching the optimal solution.
Related papers
- SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model [88.04128601981145]
We introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning.<n>modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation.<n>World-model-based planning, in particular, shows consistent advantage of up to 124% over autoregressive planning.
arXiv Detail & Related papers (2025-07-31T17:57:20Z) - Mastering Da Vinci Code: A Comparative Study of Transformer, LLM, and PPO-based Agents [0.0]
The Da Vinci Code, a game of logical deduction and imperfect information, presents unique challenges for artificial intelligence.<n>This paper investigates the efficacy of various AI paradigms in mastering this game.
arXiv Detail & Related papers (2025-06-15T10:33:30Z) - KORGym: A Dynamic Game Platform for LLM Reasoning Evaluation [78.96590724864606]
We introduce the Knowledge Orthogonal Reasoning Gymnasium (KORGym), a dynamic evaluation platform inspired by KOR-Bench and Gymnasium.<n>KORGym offers over fifty games in either textual or visual formats and supports interactive, multi-turn assessments with reinforcement learning scenarios.
arXiv Detail & Related papers (2025-05-20T16:06:32Z) - Comparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit Tasks [6.355245936740126]
Large language models (LLMs) are increasingly used to simulate or automate human behavior in sequential decision-making tasks.<n>We focus on the exploration-exploitation (E&E) tradeoff, a fundamental aspect of dynamic decision-making under uncertainty.<n>We find that reasoning shifts LLMs toward more human-like behavior, characterized by a mix of random and directed exploration.
arXiv Detail & Related papers (2025-05-15T02:09:18Z) - The Influence of Human-inspired Agentic Sophistication in LLM-driven Strategic Reasoners [3.5083201638203154]
We evaluate the role of agentic sophistication in shaping artificial reasoners' performance.<n>We benchmarked three agent designs: a simple game-theoretic model, an unstructured LLM-as-agent model, and an LLM integrated into a traditional agentic framework.<n>Our analysis, covering over 2000 reasoning samples across 25 agent configurations, shows that human-inspired cognitive structures can enhance LLM agents' alignment with human strategic behaviour.
arXiv Detail & Related papers (2025-05-14T13:51:24Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [54.787341008881036]
We introduce Reinforced Meta-thinking Agents (ReMA), a novel framework that leverages Multi-Agent Reinforcement Learning (MARL) to elicit meta-thinking behaviors.
ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.
Experimental results demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - How Strategic Agents Respond: Comparing Analytical Models with LLM-Generated Responses in Strategic Classification [9.296248945826084]
We propose using strategic advice generated by large language models to simulate human agent responses in Strategic Classification.<n>We examine five critical SC scenarios -- hiring, loan applications, school admissions, personal income, and public assistance programs.<n>We then compare the resulting agent responses with the best responses generated by existing theoretical models.
arXiv Detail & Related papers (2025-01-20T01:39:03Z) - Game-theoretic LLM: Agent Workflow for Negotiation Games [30.83905391503607]
This paper investigates the rationality of large language models (LLMs) in strategic decision-making contexts.
We design multiple game-theoretic that guide the reasoning and decision-making processes of LLMs.
The findings have implications for the development of more robust and strategically sound AI agents.
arXiv Detail & Related papers (2024-11-08T22:02:22Z) - LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models [87.49676980090555]
Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities.
We introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs.
arXiv Detail & Related papers (2024-08-28T13:16:41Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Hypothetical Minds: Scaffolding Theory of Mind for Multi-Agent Tasks with Large Language Models [4.9108308035618515]
Multi-agent reinforcement learning (MARL) methods struggle with the non-stationarity of multi-agent systems.<n>Here, we leverage large language models (LLMs) to create an autonomous agent that can handle these challenges.<n>Our agent, Hypothetical Minds, consists of a cognitively-inspired architecture, featuring modular components for perception, memory, and hierarchical planning over two levels of abstraction.
arXiv Detail & Related papers (2024-07-09T17:57:15Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
Existing work highlights the ability of Large Language Models to address complex reasoning tasks and mimic human communication.
We propose to investigate the use of LLMs to generate synthetic human demonstrations, which are then used to learn subrational agent policies.
We experimentally evaluate the ability of our framework to model sub-rationality through four simple scenarios.
arXiv Detail & Related papers (2024-02-13T19:46:39Z) - K-Level Reasoning: Establishing Higher Order Beliefs in Large Language Models for Strategic Reasoning [76.3114831562989]
It requires Large Language Model (LLM) agents to adapt their strategies dynamically in multi-agent environments.
We propose a novel framework: "K-Level Reasoning with Large Language Models (K-R)"
arXiv Detail & Related papers (2024-02-02T16:07:05Z) - ALYMPICS: LLM Agents Meet Game Theory -- Exploring Strategic
Decision-Making with AI Agents [77.34720446306419]
Alympics is a systematic simulation framework utilizing Large Language Model (LLM) agents for game theory research.
Alympics creates a versatile platform for studying complex game theory problems.
arXiv Detail & Related papers (2023-11-06T16:03:46Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.