Advanced Physics-Informed Neural Network with Residuals for Solving Complex Integral Equations
- URL: http://arxiv.org/abs/2501.16370v1
- Date: Wed, 22 Jan 2025 19:47:03 GMT
- Title: Advanced Physics-Informed Neural Network with Residuals for Solving Complex Integral Equations
- Authors: Mahdi Movahedian Moghaddam, Kourosh Parand, Saeed Reza Kheradpisheh,
- Abstract summary: RISN is a novel neural network architecture designed to solve a wide range of integral and integro-differential equations.
We show that RISN consistently outperforms PINN, achieving significantly lower Mean Absolute Errors (MAE) across various types of equations.
The results highlight RISN's robustness and efficiency in solving challenging integral and integro-differential problems.
- Score: 0.13499500088995461
- License:
- Abstract: In this paper, we present the Residual Integral Solver Network (RISN), a novel neural network architecture designed to solve a wide range of integral and integro-differential equations, including one-dimensional, multi-dimensional, ordinary and partial integro-differential, systems, and fractional types. RISN integrates residual connections with high-accurate numerical methods such as Gaussian quadrature and fractional derivative operational matrices, enabling it to achieve higher accuracy and stability than traditional Physics-Informed Neural Networks (PINN). The residual connections help mitigate vanishing gradient issues, allowing RISN to handle deeper networks and more complex kernels, particularly in multi-dimensional problems. Through extensive experiments, we demonstrate that RISN consistently outperforms PINN, achieving significantly lower Mean Absolute Errors (MAE) across various types of equations. The results highlight RISN's robustness and efficiency in solving challenging integral and integro-differential problems, making it a valuable tool for real-world applications where traditional methods often struggle.
Related papers
- Neural Control Variates with Automatic Integration [49.91408797261987]
This paper proposes a novel approach to construct learnable parametric control variates functions from arbitrary neural network architectures.
We use the network to approximate the anti-derivative of the integrand.
We apply our method to solve partial differential equations using the Walk-on-sphere algorithm.
arXiv Detail & Related papers (2024-09-23T06:04:28Z) - UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs [18.532617548168123]
This paper articulates a mathematically rigorous neural solver for linear PDEs.
The proposed UGrid solver, built upon the principled integration of U-Net and MultiGrid, manifests a mathematically rigorous proof of both convergence and correctness.
arXiv Detail & Related papers (2024-08-09T03:46:35Z) - A simple algorithm for output range analysis for deep neural networks [0.0]
This paper presents a novel approach for the output range estimation problem in Deep Neural Networks (DNNs) by integrating a Simulated Annealing (SA) algorithm.
The method effectively addresses the challenges by the lack of geometric information and non-linearity inherent inResNets.
arXiv Detail & Related papers (2024-07-02T22:47:40Z) - GIT-Net: Generalized Integral Transform for Operator Learning [58.13313857603536]
This article introduces GIT-Net, a deep neural network architecture for approximating Partial Differential Equation (PDE) operators.
GIT-Net harnesses the fact that differential operators commonly used for defining PDEs can often be represented parsimoniously when expressed in specialized functional bases.
Numerical experiments demonstrate that GIT-Net is a competitive neural network operator, exhibiting small test errors and low evaluations across a range of PDE problems.
arXiv Detail & Related papers (2023-12-05T03:03:54Z) - Physical Information Neural Networks for Solving High-index
Differential-algebraic Equation Systems Based on Radau Methods [10.974537885042613]
We propose a PINN computational framework, combined Radau IIA numerical method with a neural network structure via the attention mechanisms, to directly solve high-index DAEs.
Our method exhibits excellent computational accuracy and strong generalization capabilities, providing a feasible approach for the high-precision solution of larger-scale DAEs.
arXiv Detail & Related papers (2023-10-19T15:57:10Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
We propose the attention-inspired numerical solver (AttNS) to solve differential equations due to limited data.
AttNS is inspired by the effectiveness of attention modules in Residual Neural Networks (ResNet) in enhancing model generalization and robustness.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Polynomial-Spline Neural Networks with Exact Integrals [0.0]
We develop a novel neural network architecture that combines a mixture-of-experts model with free knot B1-spline basis functions.
Our architecture exhibits both $h$- and $p$- refinement for regression problems at the convergence rates expected from approximation theory.
We demonstrate the success of our network on a range of regression and variational problems that illustrate the consistency and exact integrability of our network architecture.
arXiv Detail & Related papers (2021-10-26T22:12:37Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.