One-for-All Does Not Work! Enhancing Vulnerability Detection by Mixture-of-Experts (MoE)
- URL: http://arxiv.org/abs/2501.16454v2
- Date: Wed, 12 Feb 2025 21:53:06 GMT
- Title: One-for-All Does Not Work! Enhancing Vulnerability Detection by Mixture-of-Experts (MoE)
- Authors: Xu Yang, Shaowei Wang, Jiayuan Zhou, Wenhan Zhu,
- Abstract summary: MoEVD decomposes vulnerability detection into two tasks, CWE type classification and CWE-specific vulnerability detection.
By splitting the task, in vulnerability detection, MoEVD allows specific experts to handle distinct types of vulnerabilities instead of handling all vulnerabilities within one model.
MoEVD excels across almost all CWE types, improving recall over the best SOTA baseline by 9% to 77.8%.
- Score: 11.69736955814315
- License:
- Abstract: Deep Learning-based Vulnerability Detection (DLVD) techniques have garnered significant interest due to their ability to automatically learn vulnerability patterns from previously compromised code. Despite the notable accuracy demonstrated by pioneering tools, the broader application of DLVD methods in real-world scenarios is hindered by significant challenges. A primary issue is the "one-for-all" design, where a single model is trained to handle all types of vulnerabilities. This approach fails to capture the patterns of different vulnerability types, resulting in suboptimal performance, particularly for less common vulnerabilities that are often underrepresented in training datasets. To address these challenges, we propose MoEVD, which adopts the Mixture-of-Experts (MoE) framework for vulnerability detection. MoEVD decomposes vulnerability detection into two tasks, CWE type classification and CWE-specific vulnerability detection. By splitting the task, in vulnerability detection, MoEVD allows specific experts to handle distinct types of vulnerabilities instead of handling all vulnerabilities within one model. Our results show that MoEVD achieves an F1-score of 0.44, significantly outperforming all studied state-of-the-art (SOTA) baselines by at least 12.8%. MoEVD excels across almost all CWE types, improving recall over the best SOTA baseline by 9% to 77.8%. Notably, MoEVD does not sacrifice performance on long-tailed CWE types; instead, its MoE design enhances performance (F1-score) on these by at least 7.3%, addressing long-tailed issues effectively.
Related papers
- From Generalist to Specialist: Exploring CWE-Specific Vulnerability Detection [1.9249287163937974]
Common Weaknession (CWE) represents a unique category of vulnerabilities with distinct characteristics, code semantics, and patterns.
Treating all vulnerabilities as a single label with a binary classification approach may oversimplify the problem.
arXiv Detail & Related papers (2024-08-05T09:12:39Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
Large Language Models (LLMs) are becoming increasingly powerful, but they still exhibit significant but subtle weaknesses.
Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies.
We introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks.
arXiv Detail & Related papers (2024-06-24T15:16:45Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
This work investigates the vulnerabilities of security-enhancing diffusion models.
We demonstrate that these models are highly susceptible to DIFF2, a simple yet effective backdoor attack.
Case studies show that DIFF2 can significantly reduce both post-purification and certified accuracy across benchmark datasets and models.
arXiv Detail & Related papers (2024-06-14T02:39:43Z) - Generalization-Enhanced Code Vulnerability Detection via Multi-Task Instruction Fine-Tuning [16.54022485688803]
VulLLM is a novel framework that integrates multi-task learning with Large Language Models (LLMs) to effectively mine deep-seated vulnerability features.
The experiments conducted on six large datasets demonstrate that VulLLM surpasses seven state-of-the-art models in terms of effectiveness, generalization, and robustness.
arXiv Detail & Related papers (2024-06-06T03:29:05Z) - Effective Backdoor Mitigation in Vision-Language Models Depends on the Pre-training Objective [71.39995120597999]
Modern machine learning models are vulnerable to adversarial and backdoor attacks.
Such risks are heightened by the prevalent practice of collecting massive, internet-sourced datasets for training multimodal models.
CleanCLIP is the current state-of-the-art approach to mitigate the effects of backdooring in multimodal models.
arXiv Detail & Related papers (2023-11-25T06:55:13Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
We introduce a comprehensive vulnerability benchmark VulBench.
This benchmark aggregates high-quality data from a wide range of CTF challenges and real-world applications.
We find that several LLMs outperform traditional deep learning approaches in vulnerability detection.
arXiv Detail & Related papers (2023-11-21T08:20:39Z) - Can An Old Fashioned Feature Extraction and A Light-weight Model Improve
Vulnerability Type Identification Performance? [6.423483122892239]
We investigate the problem of vulnerability type identification (VTI)
We evaluate the performance of the well-known and advanced pre-trained models for VTI on a large set of vulnerabilities.
We introduce a lightweight independent component to refine the predictions of the baseline approach.
arXiv Detail & Related papers (2023-06-26T14:28:51Z) - Learning to Quantize Vulnerability Patterns and Match to Locate
Statement-Level Vulnerabilities [19.6975205650411]
A vulnerability codebook is learned, which consists of quantized vectors representing various vulnerability patterns.
During inference, the codebook is iterated to match all learned patterns and predict the presence of potential vulnerabilities.
Our approach was extensively evaluated on a real-world dataset comprising more than 188,000 C/C++ functions.
arXiv Detail & Related papers (2023-05-26T04:13:31Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.