論文の概要: On characterizing optimal learning trajectories in a class of learning problems
- arxiv url: http://arxiv.org/abs/2501.16521v1
- Date: Mon, 27 Jan 2025 21:43:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:41:08.199859
- Title: On characterizing optimal learning trajectories in a class of learning problems
- Title(参考訳): 学習問題のクラスにおける最適学習軌跡の特徴付けについて
- Authors: Getachew K Befekadu,
- Abstract要約: 本稿では,学習問題のクラスにおける最適学習軌跡を特徴付けるために,最大原理と動的プログラミングの関係を利用する。
このような学習問題のクラスに対して最適な推定モデルパラメータに導かれる最適な学習軌跡を構築するためのアルゴリズム的レシピを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this brief paper, we provide a mathematical framework that exploits the relationship between the maximum principle and dynamic programming for characterizing optimal learning trajectories in a class of learning problem, which is related to point estimations for modeling of high-dimensional nonlinear functions. Here, such characterization for the optimal learning trajectories is associated with the solution of an optimal control problem for a weakly-controlled gradient system with small parameters, whose time-evolution is guided by a model training dataset and its perturbed version, while the optimization problem consists of a cost functional that summarizes how to gauge the quality/performance of the estimated model parameters at a certain fixed final time w.r.t. a model validating dataset. Moreover, using a successive Galerkin approximation method, we provide an algorithmic recipe how to construct the corresponding optimal learning trajectories leading to the optimal estimated model parameters for such a class of learning problem.
- Abstract(参考訳): 本稿では,高次元非線形関数のモデリングにおける点推定に関連する学習問題のクラスにおいて,最適学習軌跡を特徴付けるために,最大原理と動的プログラミングの関係を利用する数学的枠組みを提案する。
このような最適学習軌跡の特徴づけは、モデルトレーニングデータセットとその摂動バージョンによって時間進化が導かれる小さなパラメータを持つ弱制御勾配系に対する最適制御問題の解に関連付けられ、最適化問題は、モデル検証データセットのように、推定されたモデルパラメータの品質/性能を一定の最終時間w.r.t.で測定する方法を要約したコスト関数からなる。
さらに, 逐次ガレルキン近似法を用いて, 学習問題のクラスに対して最適推定モデルパラメータを導出する最適学習軌跡を構築するためのアルゴリズム的レシピを提案する。
関連論文リスト
- A successive approximation method in functional spaces for hierarchical optimal control problems and its application to learning [0.0]
本研究では,高次元非線形関数をモデル化するための点推定の学習問題について考察する。
デューコースにおける推定パラメータは、異なるモデル検証データセット上で許容できる予測精度を提供する。
最適化段階における一般化と正規化の両方を適切に考慮する枠組みを提供する。
論文 参考訳(メタデータ) (2024-10-27T22:28:07Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - High-dimensional Bayesian Optimization Algorithm with Recurrent Neural
Network for Disease Control Models in Time Series [1.9371782627708491]
本稿では,リカレントニューラルネットワークを組み合わせた高次元ベイズ最適化アルゴリズムを提案する。
提案したRNN-BOアルゴリズムは,低次元空間における最適制御問題を解くことができる。
また、RNN層の異なる数の影響や、ソリューションの品質と関連する計算努力のトレードオフに対する訓練のエポックスについても論じる。
論文 参考訳(メタデータ) (2022-01-01T08:40:17Z) - Learning to Refit for Convex Learning Problems [11.464758257681197]
ニューラルネットワークを用いて、異なるトレーニングセットに対して最適化されたモデルパラメータを推定するフレームワークを提案する。
我々は、凸問題を近似するためにニューラルネットワークのパワーを厳格に特徴づける。
論文 参考訳(メタデータ) (2021-11-24T15:28:50Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
本稿では,制約付きSufficiently Accurateモデル学習手法を提案する。
これはそのような問題の例を示し、いくつかの近似解がいかに近いかという定理を提示する。
近似解の質は、関数のパラメータ化、損失と制約関数の滑らかさ、モデル学習におけるサンプルの数に依存する。
論文 参考訳(メタデータ) (2021-02-11T16:27:31Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
現在のモデルに基づく強化学習アプローチでは、単に学習されたブラックボックスシミュレータとしてモデルを使用する。
その微分可能性を利用してモデルをより効果的に活用する方法を示す。
論文 参考訳(メタデータ) (2020-05-16T19:18:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。