Reconciling Predictive Multiplicity in Practice
- URL: http://arxiv.org/abs/2501.16549v1
- Date: Mon, 27 Jan 2025 22:48:20 GMT
- Title: Reconciling Predictive Multiplicity in Practice
- Authors: Tina Behzad, SÃlvia Casacuberta, Emily Ruth Diana, Alexander Williams Tolbert,
- Abstract summary: Reconcile is a reconciliation procedure to address the model multiplicity (MM) phenomenon.
In this paper, we empirically analyze the Reconcile algorithm using five widely-used fairness datasets.
We extend the Reconcile algorithm to the setting of causal inference, given that different competing estimators can again disagree on specific causal average treatment effect (CATE) values.
- Score: 43.74883617124773
- License:
- Abstract: Many machine learning applications predict individual probabilities, such as the likelihood that a person develops a particular illness. Since these probabilities are unknown, a key question is how to address situations in which different models trained on the same dataset produce varying predictions for certain individuals. This issue is exemplified by the model multiplicity (MM) phenomenon, where a set of comparable models yield inconsistent predictions. Roth, Tolbert, and Weinstein recently introduced a reconciliation procedure, the Reconcile algorithm, to address this problem. Given two disagreeing models, the algorithm leverages their disagreement to falsify and improve at least one of the models. In this paper, we empirically analyze the Reconcile algorithm using five widely-used fairness datasets: COMPAS, Communities and Crime, Adult, Statlog (German Credit Data), and the ACS Dataset. We examine how Reconcile fits within the model multiplicity literature and compare it to existing MM solutions, demonstrating its effectiveness. We also discuss potential improvements to the Reconcile algorithm theoretically and practically. Finally, we extend the Reconcile algorithm to the setting of causal inference, given that different competing estimators can again disagree on specific causal average treatment effect (CATE) values. We present the first extension of the Reconcile algorithm in causal inference, analyze its theoretical properties, and conduct empirical tests. Our results confirm the practical effectiveness of Reconcile and its applicability across various domains.
Related papers
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
This paper develops an algorithm, PISA, which enables scalable parallel computing and supports various second-moment schemes.
Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz of the gradient.
Comprehensive experimental evaluations for or fine-tuning diverse FMs, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate its superior numerical performance compared to various state-of-the-art Directions.
arXiv Detail & Related papers (2025-02-15T12:28:51Z) - Comparative study of regression vs pairwise models for surrogate-based heuristic optimisation [1.2535250082638645]
This paper addresses the formulation of surrogate problems as both regression models that approximate fitness (surface surrogate models) and a novel way to connect classification models (pairwise surrogate models)
The performance of the overall search, when using online machine learning-based surrogate models, depends not only on the accuracy of the predictive model but also on the kind of bias towards positive or negative cases.
arXiv Detail & Related papers (2024-10-04T13:19:06Z) - Divide-and-Conquer Predictive Coding: a structured Bayesian inference algorithm [11.722226132995978]
We introduce a novel predictive coding algorithm for structured generative models, that we call divide-and-conquer predictive coding (D CPC)
D CPC performs maximum-likelihood updates of model parameters without sacrificing biological plausibility.
Empirically, DCPC achieves better numerical performance than competing algorithms and provides accurate inference in a number of problems not previously addressed with predictive coding.
arXiv Detail & Related papers (2024-08-11T17:29:03Z) - Inference for Regression with Variables Generated by AI or Machine Learning [0.0]
We show that naively treating AI- and ML-generated variables as "data" leads to biased estimates and invalid inference.
We propose two methods to correct bias and perform valid inference: (i) an explicit bias correction with bias-corrected confidence intervals, and (ii) joint maximum likelihood estimation of the regression model and the variables of interest.
arXiv Detail & Related papers (2024-02-23T19:52:09Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - An Application of a Multivariate Estimation of Distribution Algorithm to
Cancer Chemotherapy [59.40521061783166]
Chemotherapy treatment for cancer is a complex optimisation problem with a large number of interacting variables and constraints.
We show that the more sophisticated algorithm would yield better performance on a complex problem like this.
We hypothesise that this is caused by the more sophisticated algorithm being impeded by the large number of interactions in the problem.
arXiv Detail & Related papers (2022-05-17T15:28:46Z) - A bandit-learning approach to multifidelity approximation [7.960229223744695]
Multifidelity approximation is an important technique in scientific computation and simulation.
We introduce a bandit-learning approach for leveraging data of varying fidelities to achieve precise estimates.
arXiv Detail & Related papers (2021-03-29T05:29:35Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.