Few-Shot Optimized Framework for Hallucination Detection in Resource-Limited NLP Systems
- URL: http://arxiv.org/abs/2501.16616v1
- Date: Tue, 28 Jan 2025 01:26:22 GMT
- Title: Few-Shot Optimized Framework for Hallucination Detection in Resource-Limited NLP Systems
- Authors: Baraa Hikal, Ahmed Nasreldin, Ali Hamdi, Ammar Mohammed,
- Abstract summary: We introduce DeepSeek Few-shot optimization to enhance weak label generation through iterative prompt engineering.
We achieve high-quality annotations that considerably enhanced the performance of downstream models.
We further fine-tuned the Mistral-7B-Instruct-v0.3 model on these optimized annotations, enabling it to accurately detect hallucinations in resource-limited settings.
- Score: 1.0124625066746595
- License:
- Abstract: Hallucination detection in text generation remains an ongoing struggle for natural language processing (NLP) systems, frequently resulting in unreliable outputs in applications such as machine translation and definition modeling. Existing methods struggle with data scarcity and the limitations of unlabeled datasets, as highlighted by the SHROOM shared task at SemEval-2024. In this work, we propose a novel framework to address these challenges, introducing DeepSeek Few-shot optimization to enhance weak label generation through iterative prompt engineering. We achieved high-quality annotations that considerably enhanced the performance of downstream models by restructuring data to align with instruct generative models. We further fine-tuned the Mistral-7B-Instruct-v0.3 model on these optimized annotations, enabling it to accurately detect hallucinations in resource-limited settings. Combining this fine-tuned model with ensemble learning strategies, our approach achieved 85.5% accuracy on the test set, setting a new benchmark for the SHROOM task. This study demonstrates the effectiveness of data restructuring, few-shot optimization, and fine-tuning in building scalable and robust hallucination detection frameworks for resource-constrained NLP systems.
Related papers
- Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
We introduce Dynamic Noise Preference Optimization (DNPO) to ensure consistent improvements across iterations.
In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6%.
DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations.
arXiv Detail & Related papers (2025-02-08T01:20:09Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models [0.0]
Hallucination, the generation of factually incorrect content, is a growing challenge in Large Language Models.
This paper introduces THaMES, an integrated framework and library addressing this gap.
THaMES offers an end-to-end solution for evaluating and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-09-17T16:55:25Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.
The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.
We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - Augmenting NER Datasets with LLMs: Towards Automated and Refined Annotation [2.224935861690233]
This research introduces a novel hybrid annotation approach that synergizes human effort with the capabilities of Large Language Models (LLMs)
By employing a label mixing strategy, it addresses the issue of class imbalance encountered in LLM-based annotations.
This study illuminates the potential of leveraging LLMs to improve dataset quality, introduces a novel technique to mitigate class imbalances, and demonstrates the feasibility of achieving high-performance NER in a cost-effective way.
arXiv Detail & Related papers (2024-03-30T12:13:57Z) - GPTA: Generative Prompt Tuning Assistant for Synergistic Downstream Neural Network Enhancement with LLMs [11.572835837392867]
This study introduces GPTA, a Large Language Model assistance training framework, that enhances the training of downstream task models via prefix prompt.
By minimizing data exposure to LLM, the framework addresses the security and legal challenges of applying LLM in downstream task model training.
arXiv Detail & Related papers (2024-03-29T23:04:04Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Fine-tuning BERT for Low-Resource Natural Language Understanding via
Active Learning [30.5853328612593]
In this work, we explore fine-tuning methods of BERT -- a pre-trained Transformer based language model.
Our experimental results show an advantage in model performance by maximizing the approximate knowledge gain of the model.
We analyze the benefits of freezing layers of the language model during fine-tuning to reduce the number of trainable parameters.
arXiv Detail & Related papers (2020-12-04T08:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.