Point Cloud Upsampling as Statistical Shape Model for Pelvic
- URL: http://arxiv.org/abs/2501.16716v1
- Date: Tue, 28 Jan 2025 05:47:50 GMT
- Title: Point Cloud Upsampling as Statistical Shape Model for Pelvic
- Authors: Tongxu Zhang, Bei Wang,
- Abstract summary: We propose a novel framework that integrates medical image segmentation and point cloud upsampling for accurate shape reconstruction of pelvic models.
Using the SAM-Med3D model for segmentation and a point cloud upsampling network trained on the MedShapeNet dataset, our method transforms sparse medical imaging data into high-resolution 3D bone models.
- Score: 1.4045865137356779
- License:
- Abstract: We propose a novel framework that integrates medical image segmentation and point cloud upsampling for accurate shape reconstruction of pelvic models. Using the SAM-Med3D model for segmentation and a point cloud upsampling network trained on the MedShapeNet dataset, our method transforms sparse medical imaging data into high-resolution 3D bone models. This framework leverages prior knowledge of anatomical shapes, achieving smoother and more complete reconstructions. Quantitative evaluations using metrics such as Chamfer Distance etc, demonstrate the effectiveness of the point cloud upsampling in pelvic model. Our approach offers potential applications in reconstructing other skeletal structures, providing a robust solution for medical image analysis and statistical shape modeling.
Related papers
- An End-to-End Deep Learning Generative Framework for Refinable Shape
Matching and Generation [45.820901263103806]
Generative modelling for shapes is a prerequisite for In-Silico Clinical Trials (ISCTs)
We develop a novel unsupervised geometric deep-learning model to establish refinable shape correspondences in a latent space.
We extend our proposed base model to a joint shape generative-clustering multi-atlas framework to incorporate further variability.
arXiv Detail & Related papers (2024-03-10T21:33:53Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeIT represents an anatomical structure with an implicit template field shared within the same category.
It ensures the implicit template field generates valid templates by strengthening the constraint of the correspondence between the instance shape and the template shape.
A template Interaction Module is introduced to reconstruct unseen shapes by interacting the valid template shapes with the instance-wise latent codes.
arXiv Detail & Related papers (2023-12-11T07:09:32Z) - ADASSM: Adversarial Data Augmentation in Statistical Shape Models From
Images [0.8192907805418583]
This paper introduces a novel strategy for on-the-fly data augmentation for the Image-to-SSM framework by leveraging data-dependent noise generation or texture augmentation.
Our approach achieves improved accuracy by encouraging the model to focus on the underlying geometry rather than relying solely on pixel values.
arXiv Detail & Related papers (2023-07-06T20:21:12Z) - BOSS: Bones, Organs and Skin Shape Model [10.50175010474078]
We propose a deformable human shape and pose model that combines skin, internal organs, and bones, learned from CT images.
By modeling the statistical variations in a pose-normalized space using probabilistic PCA, our approach offers a holistic representation of the body.
arXiv Detail & Related papers (2023-03-08T22:31:24Z) - DeepSSM: A Blueprint for Image-to-Shape Deep Learning Models [4.608133071225539]
Statistical shape modeling (SSM) characterizes anatomical variations in a population of shapes generated from medical images.
DeepSSM aims to provide a blueprint for deep learning-based image-to-shape models.
arXiv Detail & Related papers (2021-10-14T04:52:37Z) - A Self-Supervised Deep Framework for Reference Bony Shape Estimation in
Orthognathic Surgical Planning [55.30223654196882]
A virtual orthognathic surgical planning involves simulating surgical corrections of jaw deformities on 3D facial bony shape models.
A reference facial bony shape model representing normal anatomies can provide an objective guidance to improve planning accuracy.
We propose a self-supervised deep framework to automatically estimate reference facial bony shape models.
arXiv Detail & Related papers (2021-09-11T05:24:40Z) - Discriminative and Generative Models for Anatomical Shape Analysison
Point Clouds with Deep Neural Networks [3.7814216736076434]
We introduce deep neural networks for the analysis of anatomical shapes that learn a low-dimensional shape representation from the given task.
Our framework is modular and consists of several computing blocks that perform fundamental shape processing tasks.
We propose a discriminative model for disease classification and age regression, as well as a generative model for the accruate reconstruction of shapes.
arXiv Detail & Related papers (2020-10-02T07:37:40Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
We systematically assess the outcome of widely used, state-of-the-art SSM tools.
We propose validation frameworks for anatomical landmark/measurement inference and lesion screening.
ShapeWorks and Deformetrica shape models are found to capture clinically relevant population-level variability.
arXiv Detail & Related papers (2020-09-07T03:51:35Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.