論文の概要: Through the Prism of Culture: Evaluating LLMs' Understanding of Indian Subcultures and Traditions
- arxiv url: http://arxiv.org/abs/2501.16748v1
- Date: Tue, 28 Jan 2025 06:58:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:41:46.220448
- Title: Through the Prism of Culture: Evaluating LLMs' Understanding of Indian Subcultures and Traditions
- Title(参考訳): 文化のプリズムを通して:インド亜文化と伝統のLLMの理解を評価する
- Authors: Garima Chhikara, Abhishek Kumar, Abhijnan Chakraborty,
- Abstract要約: インド社会におけるリトル・トラディションを認識し,正確に応答する大規模言語モデルの能力を評価する。
一連のケーススタディを通じて、LLMが支配的なグレートトラディションとローカライズされたリトルトラディションの相互作用のバランスをとることができるかどうかを評価する。
その結果,LLMは文化的ニュアンスを表現できる能力を示す一方で,実践的,文脈特異的なシナリオにこの理解を適用するのに苦慮していることが明らかとなった。
- 参考スコア(独自算出の注目度): 9.357186653223332
- License:
- Abstract: Large Language Models (LLMs) have shown remarkable advancements but also raise concerns about cultural bias, often reflecting dominant narratives at the expense of under-represented subcultures. In this study, we evaluate the capacity of LLMs to recognize and accurately respond to the Little Traditions within Indian society, encompassing localized cultural practices and subcultures such as caste, kinship, marriage, and religion. Through a series of case studies, we assess whether LLMs can balance the interplay between dominant Great Traditions and localized Little Traditions. We explore various prompting strategies and further investigate whether using prompts in regional languages enhances the models cultural sensitivity and response quality. Our findings reveal that while LLMs demonstrate an ability to articulate cultural nuances, they often struggle to apply this understanding in practical, context-specific scenarios. To the best of our knowledge, this is the first study to analyze LLMs engagement with Indian subcultures, offering critical insights into the challenges of embedding cultural diversity in AI systems.
- Abstract(参考訳): 大型言語モデル (LLM) は顕著な進歩を見せているが、文化的偏見を懸念し、しばしば表現不足のサブカルチャーを犠牲にして支配的な物語を反映している。
本研究では,インド社会における小道に対するLLMの認識と対応能力を評価し,地域文化の実践や,カースト,親族関係,結婚,宗教などのサブカルチャーを包含する。
一連のケーススタディを通じて、LLMが支配的なグレートトラディションとローカライズされたリトルトラディションの相互作用のバランスをとることができるかどうかを評価する。
地域言語におけるプロンプトの使用が文化の感受性と応答品質のモデルを強化するか否かを,様々なプロンプト戦略を探求する。
その結果,LLMは文化的ニュアンスを表現できる能力を示す一方で,実践的,文脈特異的なシナリオにこの理解を適用するのに苦慮していることが明らかとなった。
私たちの知る限りでは、インドのサブカルチャーとのLLMの関わりを分析し、AIシステムに文化の多様性を組み込むという課題に関する重要な洞察を提供する最初の研究である。
関連論文リスト
- Survey of Cultural Awareness in Language Models: Text and Beyond [39.77033652289063]
大規模言語モデル(LLM)を様々なアプリケーションに大規模に展開するには、LCMはインクリビティを確保するために、ユーザに文化的に敏感である必要がある。
文化は心理学や人類学で広く研究され、近年、LLMをより文化的に包括的にする研究が急増している。
論文 参考訳(メタデータ) (2024-10-30T16:37:50Z) - Self-Pluralising Culture Alignment for Large Language Models [36.689491885394034]
本稿では,大規模言語モデルと多言語文化との整合性を実現するフレームワークであるCultureSPAを提案する。
カルチャー・アウェア/アウェアアウトプットを比較することで、カルチャー関連インスタンスを検出し、収集することができる。
広範囲な実験により、CultureSPAは、一般の能力を損なうことなく、多様な文化へのLCMのアライメントを著しく改善することが示された。
論文 参考訳(メタデータ) (2024-10-16T19:06:08Z) - Evaluating Cultural Awareness of LLMs for Yoruba, Malayalam, and English [1.3359598694842185]
マラヤラム(インド・ケララ州)とヨルバ(西アフリカ)の2つの地域言語の文化的側面を理解するための様々なLLMの能力について検討する。
LLMは英語に高い文化的類似性を示すが、マラヤラムとヨルバの6つの指標にまたがる文化的ニュアンスを捉えられなかった。
このことは、チャットベースのLLMのユーザエクスペリエンスの向上や、大規模LLMエージェントベースの市場調査の妥当性向上に大きく影響する。
論文 参考訳(メタデータ) (2024-09-14T02:21:17Z) - Translating Across Cultures: LLMs for Intralingual Cultural Adaptation [12.5954253354303]
文化適応の課題を定義し,現代LLMの性能を評価するための評価枠組みを構築した。
我々は、自動適応で起こりうる問題を解析する。
本稿は, LLMの文化的理解と, 異文化のシナリオにおける創造性について, より深い知見を提供していくことを願っている。
論文 参考訳(メタデータ) (2024-06-20T17:06:58Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
大規模言語モデル(LLM)は、かなりの常識的理解を示している。
本稿では,文化的コモンセンスタスクの文脈におけるいくつかの最先端LCMの能力と限界について検討する。
論文 参考訳(メタデータ) (2024-05-07T20:28:34Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [73.94059188347582]
110か国・地域での3つのSOTAモデルの文化認識を,文化条件付き世代を通して8つの文化関連トピックについて明らかにした。
文化条件付き世代は、デフォルトの文化と区別される余分な文化を区別する言語的な「マーカー」から成り立っていることが判明した。
論文 参考訳(メタデータ) (2024-04-16T00:50:43Z) - Does Mapo Tofu Contain Coffee? Probing LLMs for Food-related Cultural Knowledge [47.57055368312541]
FmLAMA(FmLAMA)は、食品関連の文化的事実と食実践のバリエーションに着目した多言語データセットである。
我々は,LLMを様々なアーキテクチャや構成にわたって分析し,その性能を単言語と多言語の両方で評価する。
論文 参考訳(メタデータ) (2024-04-10T08:49:27Z) - CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge [69.82940934994333]
我々は、人間とAIのコラボレーションを活用して、挑戦的な評価データセットを構築するインタラクティブなレッドチームシステムであるCulturalTeamingを紹介する。
我々の研究は、CulturalTeamingの様々なAI支援モードが、文化的な質問の作成においてアノテータを支援することを明らかにした。
CULTURALBENCH-V0.1は、ユーザのリピートの試みにより、コンパクトだが高品質な評価データセットである。
論文 参考訳(メタデータ) (2024-04-10T00:25:09Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。